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Unsupervised variable reduction methods are intended for reducing the presence of redundancy and
multicollinearity in the data. These are common issues when dealing with multivariate analysis associated to
large number of variables.With respect to supervised selection, unsupervised reduction aims at selecting subsets
of variables able to preserve information, but eliminating redundancy, noise and linearly or near-linearly
dependent variables, without considering any dependent response.
In this study,we propose theV-WSPalgorithm for unsupervised variable reduction,which is amodification of the
recently proposedWSP algorithm for design of experiments (DOE). Convergence, performances and comparison
with several benchmark algorithms, as well as with other DOE strategies adapted to variable reduction, were
evaluated on both simulated, benchmark and real QSAR datasets. The proposed algorithm demonstrated to
converge to similar solutions with respect to other reduction strategies, with the advantage to be faster and
simpler.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The large number of variables and the associated presence of
redundancy, multicollinearity, random noise and chance correlation
are common problems when dealing with multivariate modelling
[1–3]. The presence of irrelevant variables can change the underlying
data patterns and consequently it can influence results of several
multivariate methods.

The problem of data correlation is relevant in Quantitative Structure
Activity/Property relationship (QSAR/QSPR) approaches, which analyse
the relationships between molecular properties and suitable sets of
molecular descriptors calculated using computational methods. This
issue has proved difficult due to the amounts of redundancy and
multicollinearity contained in QSAR data sets, since nowadays
thousands of descriptors can be easily calculated. However, QSARmodels
should be parsimonious in order to give stable and reliable predictions
and thus only relevant descriptors should be included in the model,
while descriptors contributing to redundancy and multicollinearity of
the data should be removed [4].
and Environmental Sciences,
Milano, Italy.
).
Therefore, a common strategy for overcoming the problem of data
correlation is to decrease the number of variables. This can be carried
out bymeans of both unsupervised (variable reduction) and supervised
(variable selection) algorithms. When dealing with supervised
selection, such as for Genetic Algorithms coupled with regression or
classification methods, a response to be modelled is taken into account
in order to achieve the selection. While supervised selection is moderately
well known, this is not the case for unsupervised variable reduction,
which refers to the procedure that aims at selecting a subset of
variables able to preserve as much information of the original data as
possible, but eliminating redundancy, noise and linearly or near-linearly
dependent variables, without taking into account a dependent response.
Moreover, unsupervised reduction can facilitate the subsequent super-
vised selection, which can suffer from the presence of highly correlated
data and chance correlation, thus giving overfitted results [5].

The majority of unsupervised methods for variable reduction
proposed in literature are based on linear correlation between variables
[6,4], as well as eigenvalues obtained by singular value decomposition
[2,7] and loadings of Principal Component Analysis [8].

In this study, we propose an adaptation of the WSP method, which
has been developed for space-filling designs of experiments (SFD) to
variable reduction (V-WSP). In fact, several DOE methods are related
to the selection of representative sets of samples [9–13]. Here, we
translated this purpose to the selection of a representative set of variables
based on linear correlation. In the first part of the paper, theory of the
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proposed algorithm is introduced. Then, the performance of V-WSP is
evaluated on both simulated, benchmark and real QSAR datasets and its
effectiveness is discussed by comparison with results of other algorithms
for variable reduction. Finally, results of supervised selections performed
on both the original and reduced sets of variables were compared.

2. Materials and methods

2.1. WSP algorithm adapted for unsupervised variable reduction

Recently, a construction method of new space-filling designs for
high dimensional spaces was proposed [10]. This was derived from
the so called WSP designs based on Wootton, Sergent, Phan-Tan-Luu's
algorithm. The construction of WSP designs is established on the
selection of well distributed points in accordance with the algorithm
proposed by Sergent et al. [14–16]. Points are chosen from a set of
candidate points so as to be at a pre-fixed minimal Euclidean distance
from every point in the defined multidimensional space, but WSP can
also support adaptive corrections for specific problems [17].

In this study, the proposed WSP algorithm was adapted in order to
select a representative set of variables instead of points. Variables are
chosen in an unsupervisedway so as to be at a fixedminimal correlation
from every variable in the definedmultidimensional space. Given a data
matrix with n rows (samples) and p columns (variables), the algorithm
for calculating the V-WSP method is the following:

• step 1: choose an initial variable (seed) j and a correlation threshold
(thr);

• step 2: calculate the Pearson linear correlation coefficients (c)
between j and all other variables;

• step 3: eliminate variables d such as absolute value of cdj ≥ thr;
• step 4: variable j is selected and replaced by the variable with the
highest absolute correlation valuewith j among the remaining variables;

• step 5: repeat steps 2, 3 and 4 until there are nomore variables to select.

2.2. Parameters for variable reduction evaluation

Results and comparison between full and reduced sets of variables
were analysed by means of two parameters. The amount of correlation
and redundancy in the reduced set of variableswas quantified bymeans
of the Kmultivariate correlation index [7,18]. This is defined in terms of
the distribution of eigenvalues obtained by the diagonalization of the
correlation matrix of the data set and it is equal to 1 when all variables
are perfectly correlated, while it is equal to 0 when variables are
orthogonal.

The similarity between the structure information of the complete set
of variables and the reduced subset was quantified with a Procrustes
criterion. Procrustes analysis is a statistical method to match two data
sets measured from the same samples with different sets of variables.
It determines a linear transformation, based on translation, reflection,
orthogonal rotation, and scaling, of the points in the first data set to
best conform them to the points in the second data set [19–21]. The
Procrustes goodness-of-fit criterion is the sum of squared errors; it is
equal to 0 if two datasets coincide,while it is equal to 1 if data structures
are completely dissimilar.

2.3. Benchmark algorithms for variable reduction

Performance of V-WSP was evaluated by comparison with the
followingmethods for variable reduction. Originally proposed by Jolliffe
[8], B2 and B4 methods are based on loadings of Principal Component
Analysis (PCA). The B2 method consists in a sequential analysis of all
the Principal Components (PC), starting from the last one (the less
significant). For each PC, the first not already chosen variable with the
highest absolute loading value is removed. In the non-iterative version
this is made only once; in the iterative version, PCs are calculated
every time a variable is removed from the dataset. The idea beyond
this method is that last PCs bring the less relevant information (i.e.
redundancy and noise), thus variables that most represent these PCs
are those related to redundancy and noise in the dataset. The B4method
consists in a sequential analysis of all the principal components, starting
from the first one. For each PC, thefirst not already chosen variable with
the highest absolute loading value is selected. Since the first PCs have
most of the information, variables which are most representative of
thosefirst PCs are retained in the dataset. In order to choose the number
of variables to be retained, the number of significant PCmust be selected.
A simple method based on eigenvalues (Corrected Average Eigenvalue
Criterion, CAEC) was adopted in this study: CAEC accepts as significant
only the components with eigenvalue larger than the average eigenvalue
multiplied by 0.7 [22]. Note that when data are autoscaled, the average
eigenvalue is equal to 1.

The K Inflation factor (KIF) is a variable reduction method based on
the K multivariate correlation index [7]. This method is based on the
idea that data structure is mostly preserved by removing the variable
q for which the remaining variables show the minimum multivariate
correlation. This means that when variable q is excluded from the
data, the remainingmultivariate correlationderived from the remaining
variables is maximally decreased. The KIFj value associated to the j-th
variable is an inflation factor obtained by considering the totalmultivariate
correlation Kp and the multivariate correlation index calculated on
the data by removing the j-th variable, Kp/j. It is suggested to retain all
variable associated with a KIF index value not greater than a suggested
threshold equal to 0.50 [7].

The Pairwise correlation method is based on a simple algorithm,
which is included in some commercial QSAR softwares, such as Dragon
6 [23]. For each pair of correlated descriptors (variables) with a correla-
tion coefficient equal to or larger than a defined correlation threshold,
the one showing the largest pair correlation with all the other descrip-
tors is removed in an iterative way. Similar strategies were proposed
in literature. For example, the CORCHOP algorithm identifies variables
whose correlationwith one another is higher than a predefined threshold
and suggests an appropriate member of the pair to remove [6].

The Canonical Measure of Correlation (CMC index) between sets of
variables is a method for determining the subset of variables that
reproduce aswell as possible themain structural features of the complete
data set [2,24]. The CMC index can be used following a stepwise proce-
dure, which consists in comparing each variable in turn with the entire
set of available variables and excluding the most correlated one. The
procedure is repeated iteratively by using the remaining variables until
only two variables remain. At the end of this elimination procedure,
variables can be ranked on the basis of their CMC values and the subset
of variables with the smallest CMC values can then be included in the
reduced set of variables.

Auto-Associative Multivariate Regression Trees (AAMRT) were
suggested as variable reduction strategy. They are based onMultivariate
Regression Trees (MRT), but in AAMRT variables are not only used as
explanatory variables, but also as response variables. In this way,
AAMRT divide samples into groups with similar response values by
using explanatory variables, and variables in the tree nodes are
supposed to be the most responsible for the cluster structure in the
data. Therefore, the set of variables selected in the tree nodes can be
retained as the result of the unsupervised data reduction [3].

Unsupervised Forward Selection (UFS) is a data reduction algorithm
that starts with the two descriptors with the smallest correlation and
selects additional descriptors based on their multiple correlations with
those already chosen. The reduction process stops when the correlation
value of each remaining variable with those already selected exceeds a
defined threshold. Thus, UFS selects a reduced subset of variables that
is as close to orthogonality as possible [4].

Since V-WSP is based on the same principles as theWSP algorithm for
the selection of a representative set of samples, twoother DOE algorithms
were also considered andmodified to variable reduction purposes. One is



Fig. 1. Loadings of first and second principal components calculated on the full original
simulated dataset. Variables selected by V-WSP are plotted as red circles. (For interpretation
of the references to colour in this figure, the reader is referred to the web version of this
article.)
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the Kennard–Stone (KS) algorithm that selects a representative set of
samples on the basis of their inter-distances [11]; the other is the
Distance-Based Optimal Design (DBOD) that partitions samples in two
sets on the basis of a Distance-Based Optimal Design [9]. In this study,
the original KS and DBOD strategies were readapted, to be applied on
variables instead of sample. The absolute value of the correlation
coefficient between variable pairs was used as the similarity criterion
and, in particular, 1 minus the absolute value of correlation coefficient
was considered as the distance measure between variables.

2.4. Datasets

Theperformanceof V-WSPwas evaluatedon twobenchmarkdatasets
(Aphid and Coffee) and two large QSAR datasets (Biodegradation and
LogP).

Aphid (Alate adelges) consists of 19 different variables measured on
40 winged aphids (samples) [25]. Coffee is another benchmark dataset
for variable reduction and consists of 43 samples described by 13
variables [26].

The Biodegradation dataset is constituted by 1055 chemicals and
was used to develop QSAR models for the study of the relationships
between chemical structure and biodegradation of molecules [27]. In
this study, 758 molecular descriptors, belonging to 5 different blocks
(40 constitutional indices, 72 topological indices, 385 2D matrix-based
descriptors, 181 2D autocorrelations, 80 Burden eigenvalues), were
calculated for each molecule by means of DRAGON software [23].
Since the effect of unsupervised variable reduction was evaluated by
means of supervised selection performed on both the original and
reduced sets of variables, an additional external validation set ofmolecules
was considered for the final validation of the supervised selection. This
external setwas constituted of 670molecules (191 ready biodegradable
and 479 not ready biodegradable).

The LogP dataset is constituted by 12,403 molecules described by
1265 molecular descriptors, belonging to 11 different blocks: 42
constitutional indices, 32 ring descriptors, 72 topological indices, 46
walk and path counts, 37 connectivity indices, 48 information indices,
334 2D matrix-based descriptors, 213 2D autocorrelations, 96 Burden
eigenvalues, 21 Eta indices, and 324 Edge Adjacency indices. Molecules
were retrieved from the PHYSPROP dataset [28], which was previously
used to calibrate QSARmodels for predicting the octanol–water partition
coefficient of molecules (LogP) [29]. All chemicals were screened and
molecular structures checked in order to cure the dataset. Molecules
were randomly divided into two subsets: 8683 molecules were used
to perform the unsupervised variable reduction and the subsequent
supervised variable selection based on both reduced and original sets of
variables, while 3720 molecules were just used to validate the models
obtained in the supervised selection.

Data are available for downloading together with the code for
calculating the V-WSP algorithm, as detailed in the software section.

2.5. Software

Molecular descriptors of the Biodegradation and LogP datasets were
calculated by means of DRAGON [23]. Multivariate Regression Trees
(AAMRT) were calculated with the GUIDE software [30]. Unsupervised
Forward Selection (UFS) was calculated by means of the software
distributed by the Centre for Molecular Design, University of Portsmouth
[4]. The Kennard–Stone algorithm for variable reduction was adapted
from the MATLAB routine released by Michal Daszykowski (Department
of Chemometrics, Institute of Chemistry, The University of Silesia) and
available at http://www.chemometria.us.edu.pl [31].

All other calculations were performed in MATLAB (MathWorks) by
means of routines built by the authors. TheMATLAB routine for calculating
the V-WSP algorithm and all datasets used in this study are available at
the Milano Chemometrics and QSAR Research Group website (http://
michem.disat.unimib.it/chm/download/wspinfo.htm). Since methods
were compared also on the basis of their computational performances,
all calculations were performed on the same machine (HP Z620
Workstation, processor 2.00 GHz, 16GB RAM).

3. Results

3.1. Demonstration of V-WSP on simulated and benchmark datasets

The use of the proposed V-WSPmethod is initially demonstrated on
a simple simulated dataset comprised of 1000 samples and 100
variables. The dataset was created so that variables were divided in 5
uncorrelated blocks, while variables of each block had correlation
higher than 0.80.

With a correlation threshold thr equal to 0.80, V-WSP included just 5
variables in the reduced set, one for each uncorrelated block. The K
correlation index calculated on the full set of variables (0.82) was
reduced to 0.04 when only the 5 selected variables were considered.
Procrustes analysis on the first five principal components for the
reduced and original data gave goodness-of-fit equal to 0.14. Five
components were retained since five blocks of uncorrelated variables
were created and therefore five sources of information were expected.
The first five PCs explained 86% of variance of the original data.

V-WSP demonstrated to be able to include significant variables in
the reduced set. In fact, one variable for each uncorrelated block was
selected, as expected, and this allowed the reduction of redundancy
andmulticollinearity (theK correlation indexwas considerably reduced
from 0.82 to 0.04) while preserving information on the data structure,
as confirmed by the low Procrustes goodness-of-fit (0.14). Looking at
loadings of the first two principal components calculated on the original
set of 100 variables (Fig. 1), it is possible to identify the five uncorrelated
blocks of variables. Variables included in the reduced set correctly
covered the multidimensional space represented by all the original
variables.

TheV-WSPprocedurewas also applied on thebenchmarkAphid and
Coffee datasets (19 and 13 variables, respectively) by selecting one
variable at a time as the algorithm seed. In this case, a number of solutions
equal to the number of variables were obtained and thus, the selection
frequency of variables was calculated, which allowed the variables to be
ranked. The V-WSP solution is the set of the top-ranked variables
(Tables 1 and 2).

The V-WSP correlation thresholds used for Aphid and Coffee were
0.85 and 0.50, respectively. The same correlation thresholds were
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Table 1
Variable reduction results on the Aphid dataset.

Method Size Variables

V-WSP 5 5, 11, 17, 18, 19
KS 5 5, 11, 13, 17, 18
Pairwise correlation 5 5, 9, 11, 17, 19
DBOD 5 5, 10, 11, 17, 18
AAMRT 2 12, 13
CMC 5 5, 11, 17, 18, 19
UFS 5 5, 9, 11, 17, 19
KIF method 5 5, 9, 11, 18, 19
B2 4 2, 5, 11, 18
B2 iterative 4 5, 9, 11, 19
B4 4 5, 11, 13, 17
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applied to UFS and Pairwise correlation methods. Thresholds were
selected to include in the reduced set of variables approximately half
of the initial set of variables. The threshold selected for the Coffee
dataset was lower since it has a lower degree of correlation between
variables, the average absolute correlation value being equal to 0.40,
while Aphid has an average absolute correlation value equal to 0.69.

For Aphid dataset, 5 variables out of 19 (namely variables 5, 11, 17,
18 and 19) are present in all the 19 V-WSP solutions. This solution
exactly corresponds to that obtained by CMC algorithm, while partly
matches solutions of the other reduction algorithms, as shown in
Table 1. In particular, KS and DBOD selected a common subset of 4
variables (5, 11, 17, 18), as well as UFS and Pairwise correlation (5, 11,
17, 19), while KIF included variables 5, 11, 18, and 19. In previous
analyses of the Aphid data, four or five variables were supposed to be
necessary in order to account for as much information as that of the
original set of variables [2]. In particular, variables 5, 11 and 17 resulted
on average not much correlated with all the other variables and thus
they were retained in the reduced sets of variables by several algorithms.
On the other hand, variables 1, 7, 10, and 15 were never retained.
Therefore, V-WSP results appear to be consistent with those obtained
by the majority of the considered methods.

Results of variable reduction obtained on the Coffee dataset are
listed in Table 2. Even on this dataset, V-WSP gave consistent results
when compared to other methods. The subset of variables selected by
V-WSP was very similar to those selected by KS, DBOD, Pairwise
correlation and KIF. Variables 1, 2, 3, 4 and 6 were always included in
the 13 V-WSP solutions. These variables were included in the reduced
sets by the majority of considered algorithms. Variables 10 and 11
were selected 8 and 6 times in the V-WSP solutions, respectively. Even
this couple of variables is represented in subsets selected by other
algorithms. Finally, variables 7, 8 and 13were those with less frequencies
of selection in the V-WSP solutions: variables 8 and 13 were never
selected by other methods, while variable 7 was retained by just two
algorithms (UFS and B4).
Table 2
Variable reduction results on the Coffee dataset.

Method Size Variables

V-WSP 7 1, 2, 3, 4, 6, 10, 11
KS 7 1, 2, 3, 4, 6, 9, 10
Pairwise correlation 8 1, 2, 3, 4, 6, 9, 10, 11
DBOD 7 1, 2, 3, 4, 6, 11, 12
AAMRT 2 3, 10
CMC 9 1, 2, 3, 4, 6, 9, 10, 11, 12
UFS 5 1, 2, 3, 4, 7
KIF 8 1, 2, 3, 4, 6, 9, 10, 11
B4 6 1, 2, 3, 4, 7, 11
B2 6 1, 2, 4, 10, 11, 12
B2 iterative 6 1, 2, 3, 4, 6, 10
3.2. Method sensitivity to the correlation threshold

The effect of the correlation threshold to be used in the V-WSP
procedure was evaluated on the Biodegradation QSAR dataset by
changing the correlation threshold from 0.50 to 0.99. The number of
selected variables, the K multivariate correlation index and Procrustes
goodness of fit calculated between the scores of the first 4 PCs of the
original and reduced sets of variableswere used as performance indicators.
The first 4 PCs were able to explain themajority of the data information in
the original dataset, eachPCbeing able to explainmore than4%of informa-
tion and the cumulative explained variance being equal to 74%. If the
reduced set includes only relevant variables, then the number of significant
PCs from this set is supposed to be equal to that obtained from the original
set of variables. Data were always autoscaled when calculating PCA.

Increasing the correlation threshold led to the increasing of the
number of variables included in the reduced set, as expected (Fig. 2). In
fact, step 3 of the V-WSP procedure eliminates variables with absolute
value of correlation higher than the fixed threshold, thr; therefore, the
lower the threshold is, the higher the number of removed variables is.
When looking at Procrustes analysis, increasing the correlation threshold
led to the decreasing of Procrustes goodness of fit. When selecting a high
correlation threshold (which corresponds to a high number of included
variables), the reduced data can better fit the original one, thus giving a
lower Procrustes goodness of fit. However, the goal of variable reduction
is not the preservation of the exact original data structure, but the
elimination of redundant information. With Procrustes analysis it is
possible to check how much the data structure (expressed in terms of
PC scores) is changed after the removal of correlated variables. With a
correlation threshold equal to 0.80, the data structure of the original set
did not change considerably in the reduced set of variables (i.e., Procrus-
tes goodness of fit equal to 0.27). Finally, increasing the correlation
threshold led to a linear increasing of K correlation index, as expected,
since more correlated variables were retained in the reduced set of
variables.
3.3. Method sensitivity to the seed selection

In presence of large datasets, such as those associated to QSAR
modelling, one major issue can be the computational time. Since QSAR
data are often characterised by thousands of variables (molecular
descriptors), it is not feasible to follow the same procedure used on
the Aphid and Coffee datasets, that is, repeating the V-WSP algorithm
by selecting one variable at a time as the algorithm seed. For QSAR
Fig. 2.Number of selecteddescriptors, Procrustes goodness offit andK correlation index as
a function of the correlation threshold in the V-WSP variable reduction of Biodegradation
dataset.
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datasets, the molecular weight (MW) can be used as a reasonable seed
to carry out the V-WSP algorithm.

In order to evaluate the effect of the initialisation of the V-WSP
algorithm, the following analysis was performed on the Biodegradation
dataset, with correlation threshold of 0.80:

a) V-WSP was repeated by selecting one variable at the time as the
seed, obtaining a number of reduced sets equal to the number of
variables (758);

b) PCA was calculated on each reduced set and 4 PCs were always
retained;

c) each reduced setwas characterised in terms of the number of selected
variables, the K multivariate correlation index and Procrustes
goodness of fit (Fig. 3).

The 758 V-WSP solutions were generally composed of a comparable
number of selected variables, in the range between 128 and 143, and
with the K correlation index in the range between 0.63 and 0.66. More-
over, the maximum and average Procrustes goodness of fit were equal
to 0.04 and 0.01, respectively. From these results, one can conclude
that all the V-WSP solutions obtained by different initialisation had
very similar data structures. Thus, these results can be considered as
evidence of the convergence of the V-WSP algorithm to a consistent
solution and low sensitivity to the algorithm seed.

3.4. Comparison with other variable reduction methods

The two QSAR datasets, LogP and Biodegradation, were used to
evaluate the V-WSP algorithm performance in comparison with other
variable reduction methods. These datasets were chosen for the compari-
son since theyare real datasets characterisedbya largenumberof variables
and presence of multicollinearity.

The V-WSP procedure was carried out selecting the molecular
weight (MW) as the seed of the algorithm. For both the datasets, the
correlation threshold was set to 0.80, since this value gave reasonable
results from early analyses.

The subset of variables obtained by means of V-WSP was compared
with the subsets produced by the benchmarkmethods (B2, B4, Pairwise
correlation, CMC, AAMRT, UFS, KIF) and the two DOE adapted algorithms
(KS, DBOD). To implement thesemethods the followingparameter values
were selected: KIF threshold of 0.75; Pairwise correlation threshold equal
to that used in the V-WSP algorithm (0.80); UFS correlation thresholds
equal to 0.99 (i.e., default proposed by authors [4]) and 0.80 (i.e., the
same correlation threshold adopted for V-WSP); for both KS and DBOD
the a priori number of variables to be retained was set at the same
Fig. 3. Evaluation of V-WSP initialisation on the Biodegradation dataset: boxplot of
Procrustes goodness of fit between 758 solutions, number of selected descriptors in each
solution and K correlation index achieved on each solution. On each boxplot, the central
mark is the median and the edges of the box are the 25th and 75th percentiles.
number of variables retained by V-WSP; for CMC method, only variables
with a CMC index lower than 0.2 were retained in the reduced set.

Strategies were compared in terms of the number of selected
descriptors (i.e. variable subset size), Procrustes analysis goodness of
fit considering the scores of the first 4 PCs of original and reduced
data, K correlation index and computational time. Results achieved for
the Biodegradation and LogP datasets are collected in Tables 3 and 4,
respectively. For the Biodegradation dataset, the V-WSP algorithm led
to a significant reduction of the original QSAR dataset providing with a
subset of just 134 molecular descriptors out of 758 (corresponding to
the 18% of the total number of variables). For this subset, theK correlation
index was reduced from 0.91 (original data) to 0.65, indicating a signifi-
cant reduction of the amount of correlation and redundancy. Finally,
Procrustes analysis gave a goodness of fit equal to 0.27, indicating that
the reduced set is able to reproduce the original data structure.

Also for the LogP dataset, V-WSP gave good results: a significantly
reduced set of variables (corresponding to the 17% of the total number
of original variables), which was able to maintain the original data
structure (Procrustes goodness of fit equal to 0.18) and, at the same
time, reduce the amount of correlation and redundancy (the K correlation
index was lowered from 0.91 to 0.66).

The three strategies based on algorithms adapted from the design of
experiments (V-WSP, Kennard–Stone KS, and Distance-Based Optimal
DesignDBOD), aswell as the procedure based on the Pairwise correlation,
gave similar results in terms of the number of retained descriptors,
Procrustes goodness of fit and K correlation index. CMC gave similar
results in terms of K correlation index and a lower degree of similarity
with the initial dataset, the Procrustes goodness of fit being equal to
0.47 and 0.30 for the Biodegradation and LogP dataset, respectively.
AAMRT produced the smallest set of descriptors, even if Regression
Trees were not pruned during their calibration. Even B2, iterative B2
and B4 methods included a few descriptors. Variables selected by B2
gave a high K correlation index and thus this method did not reduce
datamulticollinearity. On the opposite, iterative B2 selected uncorrelated
descriptors (low K correlation index), but the selected set did not repro-
duce well enough the original data structure, giving high Procrustes
goodness of fit on both datasets. KIF and B4 had an intermediate result.
UFS (correlation threshold equal to 0.80) gave a set of descriptors with
similar characteristics to those selected by B4 and B2 methods. When
the correlation threshold was increased to 0.99, UFS selected the subset
associated with the best fitting of the original data structure (lowest
Procrustes goodness of fit), but with a K correlation index slightly
higher than V-WSP and a significantly higher computational time.

In conclusion, V-WSP demonstrated to be the fastest algorithm
and required a significantly lower computational time with respect
to strategies which gave comparable results (KS, Pairwise correlation,
DBOD, UFS). Since the computational time is mainly related to the calcu-
lation of correlation values, the reduced computational time of V-WSP
was due to the reduced number of correlation coefficients needed for
the calculation. For example, V-WSP required the calculation of 17,109
correlation coefficients for the Biodegradation dataset, while KS required
the calculation of a significantly higher number of correlation coefficients
(92,661) and the Pairwise correlation approach had to be calculated on
the full correlation matrix, thus 286,903 correlation coefficients were
computed. Moreover, V-WSP requires the selection of a correlation
threshold, but KS and DBOD do not select automatically the number of
retained descriptors and the a priori choice of the number of descriptors
to be included in the final set is probably more difficult and less intuitive
than the correlation threshold required by the V-WSP strategy.

The loadings of the first and second principal components calculated
on the original Biodegradation dataset are shown in Fig. 4, where the
variables selected by each strategy are highlighted to better understand
the final result of each variable reduction method. Descriptors selected
by V-WSP covered the entire chemical space and a few descriptors were
selected in the regions of clustered variables, that is, areas characterised
by extremely correlated descriptors. The same consideration can be



Table 3
Variable reduction results on theBiodegradation dataset. Thenumber of descriptors included in the reduced set, Procrustes goodness offit calculated between the scores of thefirst 4 PCs of
original and reduced data, K correlation index and computational time are reported for each method.

Included descriptors Procrustes goodness of fit K correlation index Computational time (seconds)

V-WSP 134 0.27 0.65 0.6
KS 134 0.26 0.63 6.2
Pairwise correlation 138 0.28 0.64 4.1
DBOD 134 0.25 0.63 117
AAMRT 12 0.26 0.76 9.9
CMC 132 0.47 0.62 3434
UFS (thr 0.99) 186 0.18 0.70 26
UFS (thr 0.80) 49 0.61 0.31 2.9
KIF 61 0.62 0.44 263
B4 49 0.65 0.43 2.4
B2 49 0.08 0.91 2.1
B2 iterative 19 0.81 0.13 59
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extended to those methods which gave similar results, such as KS, DBOD,
Pairwise correlation and UFS with a correlation threshold equal to 0.99.
Other strategies produced unbalanced selections. For example, B2 selected
themajority of descriptorswith high loadings on thefirst principal compo-
nent. On the opposite, B4 selected descriptors in the centre of the loading
space.

3.5. QSAR modelling improvement by variable reduction

One advantage of variable reduction is to facilitate the subsequent
QSAR modelling, since multicollinearity and redundancy in the data are
reduced. Therefore, suitable supervised algorithms for variable selection
(such as Genetic Algorithms, GA) can be used to further select descriptors
on the basis of specific relationshipswith properties or activities.Working
on reduced variable sets can greatly facilitate GA variable selection and
improve QSAR modelling, since it is well-known that GA can suffer
from the presence of highly correlated data and the high number of initial
descriptors, which can often result in overfitted models [5].

In order to evaluate if and how a preliminary variable reduction can
improve the supervised variable selection and the resulting QSAR
models, the Biodegradation dataset was used as initial case study. The
GA variable selection was undertaken both on the original dataset
(758 variables) and the V-WSP subset (134 variables) early discussed.
Classification models were developed in order to discriminate 356
ready biodegradable (RB) and 699 not ready biodegradable (NRB)
molecules. Molecules were randomly divided into training and test
sets, containing 80% (837) and 20% (218) of the total number of
molecules (1055), respectively. The selectionwas performedmaintaining
the class proportions, that is, the number of test molecules of each
class was proportional to the number of training molecules of that
class. The training set was used to perform the supervised selection,
while molecules of the test set were used just to evaluate the predictive
Table 4
Variable reduction results on the LogP dataset. The number of descriptors included in the reduc
and reduced data, K correlation index and computational time are reported for each method.

Included descriptors Procrustes goodness

V-WSP 220 0.18
KS 220 0.18
Pairwise correlation 218 0.20
DBOD 220 0.16
AAMRT 9 0.17
CMC 257 0.30
UFS (thr 0.99) 333 0.07
UFS (thr 0.80) 82 0.53
KIF 119 0.44
B4 80 0.63
B2 80 0.09
B2 iterative 20 0.88
ability of the trained models. However, since both training and test
molecules were previously used to perform the unsupervised variable re-
duction, the supervised selection was further evaluated using an external
validation set, constituted of 670 molecules (191 ready biodegradable
and 479 not ready biodegradable).

Supervised selectionwas carried out by couplingGenetic Algorithms
and Partial Least Square Discriminant Analysis (GA-PLSDA) [32–34].
Classification models were evaluated on the basis of specificity and
sensitivity, which are the ability to correctly predict RB and NRB
molecules, respectively. In particular, selection of Latent Variables
(LVs) for PLSDA and optimisation in GAwere performed byminimizing
the classification error rate calculated in cross-validation with 5 cancel-
lation groups divided in venetian blinds. The classification Error Rate
(ER) was calculated as the complement of Non Error Rate (1-NER),
where NER was calculated as the average of class sensitivities [35].
Being a two-class model, the sensitivity of one class corresponds to
the specificity of the other class. These indices were used in order to
better estimate classification performance in presence of a data set
with unequal number of molecules in each class [35].

The performance parameters of the obtained QSAR classification
models are collected in Table 5. GA selected 7 molecular descriptors
from both the original and reduced set of variables. These two subsets
had 3 common descriptors. The smaller number of descriptors included
in the reduced set positively assisted the subsequent supervised
selection based on GA. In fact, the PLSDA model obtained from the full
set of variables required more latent variables (6), that is more
complexity, than that achieved on the reduced set (4). Moreover, the
PLSDA classification model associated with the supervised selection on
the reduced set of variables gave better predictive performance, since
the error rate was slightly lower (0.17) than that obtained from the
selection on the full set (0.18), both for the test and external validation
sets. Moreover, specificity of the NRB class (for both test and external
ed set, Procrustes goodness of fit calculated between the scores of the first 4 PCs of original

of fit K correlation index Computational time (seconds)

0.66 4
0.65 109
0.64 37
0.64 800
0.81 178
0.67 127,391
0.72 1189
0.35 74
0.49 1442
0.45 5
0.89 5.71
0.07 364



Fig. 4. Loadings of first and second principal components (cumulative explained variance equal to 62.66%) calculated on the full Biodegradation dataset. Variables selected by each variable
reduction method are plotted as red circles. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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validation sets) was improved when the preliminary variable reduction
was performed, while NRB sensitivity was improved on the external set
ofmolecules. Finally, the use of the reduced set of descriptors as starting
point for the supervised selection allowed in decreasing the Genetic
Algorithm computational time from 3.7 h to 1.5 h.

Comparison of supervised selection based on reduced and original
sets of variables was carried out on the LogP dataset too. Regression
models were developed in order to predict octanol–water partition
coefficient of molecules (LogP). As previously described in the data
section, 8683 training molecules were used to perform the unsupervised
variable reduction and the subsequent supervised variable selection,
while 3720 test molecules were just used to validate the regression
models. Supervised selection was carried out by coupling Genetic
Algorithms and k Nearest Neighbours (GA-kNN) [36]. Similarities were
calculated by means of Euclidean distances and predicted values were
computed as weighted mean of experimental LogP values of k nearest
neighbours. Regression models were evaluated on the basis of root
means squared error (RMSE) andpredictive squared correlation coefficient
(Q2) [37,38]. In particular, selection of optimal number of neighbours for
kNN and optimisation in GAwere performed bymaximising Q2 calculated
in cross-validation with 2 cancellation groups divided in venetian blinds.
Performance parameters of the obtained QSAR regression models are
collected in Table 6. GA selected 19 molecular descriptors both on the
original and reduced set of variables. Among these 19 variables, 8 descrip-
torswere included in both solutions. As commented for theBiodegradation
Table 5
Biodegradation data: comparison of supervised variable selection (GA-PLSDA) based on origi
number of Latent Variables selected in the PLSDA model (LV) are provided together with Er
cancellation groups) and on test and external validation sets. Sensitivity and specificity refer to

Initial set of descriptors Model size LV 5 fold CV

ER Sn

134 7 4 0.18 0.80
758 7 6 0.17 0.82
dataset, unsupervised reduction positively influenced the subsequent
supervised selection. In fact, the kNN regression model calculated from
the reduced set had better predictive performance both in cross validation
(Q2

cv equal to 0.84) and on the test set (Q2
ext equal to 0.86) than themodel

obtained from the full set of variables (Q2
cv equal to 0.80 andQ2

ext equal to
0.83).

4. Conclusions

In this study, an adaptation of theWSPmethod, an existing algorithm
for space-filling designs of experiments, to unsupervised variable
reduction (V-WSP) is proposed. This method allows the selection of a
representative set of variables based on linear correlation, so that
multicollinearity and redundant information in the data can be reduced.
V-WSP requires the selection of a correlation threshold and an initial
variable (seed) to perform the reduction. The effect of changing the
correlation threshold, which holds to the changing of number of
variables included in the reduced set, was discussed. Moreover, the
algorithmdemonstrated to converge to similar solutions independently
from the seed selection.

The performances of V-WSPwere evaluated on simulated, benchmark
and real QSAR datasets and compared with other methods for variable
reduction. V-WSP gave similar results with respect to other methods.
However, V-WSP demonstrated to converge to representative results
with the benefit of being less time expensive in a computational point
nal (758) and reduced (134) sets of descriptors. For each model, the model size and the
ror Rate (ER), specificity (Sp) and sensitivity (Sn) achieved in cross validation (with 5
NRB class.

Test set External validation set

Sp ER Sn Sp ER Sn Sp

0.84 0.17 0.86 0.81 0.17 0.88 0.79
0.84 0.18 0.86 0.79 0.18 0.87 0.77



Table 6
LogP data: comparison of supervised variable selection (GA-kNN) based on original (1265) and reduced (220) sets of descriptors. For each model, the model size and the number of
neighbours (k) are provided together with root means squared error in regression (RMSE) and predictive squared correlation coefficient (Q2) achieved in cross validation (with 2
cancellation groups) and on the test set.

Initial set of descriptors Model size k 2 fold CV Test set

Q2
cv RMSECV Q2

ext RMSEP

220 19 4 0.84 0.73 0.86 0.68
1265 19 3 0.80 0.81 0.83 0.74
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of view. This can be an advantage when dealing with massive datasets
such as those derived from databases and libraries related to QSAR and
computational chemistry. V-WSP requires the selection of a correlation
threshold, while other methods do not select automatically a number of
descriptors by themselves or are based on pseudo thresholds. Thus, the
final number of variables to be included in the reduced set must be
user-defined. This is probably less intuitive to be decided with respect
to the setting of a simple correlation threshold. Finally, results of
supervised selections performed on both the original and reduced sets
of variables demonstrated how variable reduction can improve the
subsequent multivariate modelling.
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