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Not all phenomena can be studied using standard experimental designs. Indeed, non-linear phenomena require
experimental designs to cover thewhole variable space in a reasonable number of experiments. Space-filling de-
signs (SFD) propose a uniformdistribution of points and arewell adapted to numerical simulations. However, not
all SFDs are equivalent in terms of uniformity of point distribution throughout the variable space, as assessed by
quality criteria (such as MinDist, Coverage, etc.) and many algorithms which are powerful in low dimensional
spaces (D b 10) become difficult to use at higher dimensions (20D, 30D, etc.). The Wootton, Sergent, Phan-
Tan-Luu's algorithm (WSP) was developed to select points from a set of candidate points and generate designs
with good uniformity criteria whatever the number of dimensions. This study presents an adjustment of this al-
gorithm, called adaptive WSP to obtain designs with specific experimental constraints, or when density is to be
increased in a zone of particular interest. This adaptive WSP algorithm will be very useful as the number of di-
mensions increases and can solve the problem of the “hollow” center.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In many fields, computer simulations are used to replace often costly
laboratory experiments. These models simulate complex phenomena
and are increasingly realistic. Thus, despite the growing calculation
capacity of processors, calculation times remain long. These models pres-
ent an increasingly realistic picture, which can be as difficult to interpret
as real-life experiments due to the numerous parameters involved, for
which the effects may be complex. When complex phenomena are stud-
ied, the most commonly used experimental designs may no longer be ef-
fective. It is therefore necessary to develop specific designs to study broad
spaces with a reasonable number of experiments. Uniform designs
(space-filling designs, SFD) [1–3] propose a uniformdistribution of points
throughout the variable space. These are appropriate for numerical simu-
lations [4–8]. However, not all SFDs are equivalent in terms of quality
criteria measuring the uniformity of point distribution, such as the
MinDist values [9–11], coverage [12], discrepancy [13], etc. Many algo-
rithms which are powerful in low dimensional spaces (D b 10) become
difficult to use at higher dimensions (20D, 30D, etc.). Difficulties arise
both from the number of input variables, which can be very large, and
from the complexity of the phenomena to be modeled in a very broad
space. Thus, low discrepancy sequences, such as Faure sequences [14]
present very poor uniformity criteria over larger dimensions, with low
MinDist values and high coverage. This results in the appearance of
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clusters, lacunae and/or alignments. In addition, some designs, such as
Strauss designs [15] can present good uniformity criteria, but are time-
consuming to build as the number of dimensions increases. Consequently,
current uniform designs do not meet the requirements for building uni-
form designs of experiments with high dimensionality.

We recently proposed a new construction algorithm, the Wootton,
Sergent, Phan-Tan-Luu's algorithm [16–18] called WSP which can be
used to develop designs presenting good uniformity criteria, whatever
the number of dimensions and points [19]. In this study, we propose an
adjustment of this algorithm, adaptive WSP (aWSP), which will allow
specific spaces to be considered. In particular, this adaptation will allow:

– experimental designs to be constructed for all spaces, when the zone
of interest is restricted to part of a space or when experimental con-
straints forbid the study of a particular zone (feasibility problem),

– an increase in density in certain zones of particular interest and/or in
which the phenomenon may present non-linearities.

2. Space-filling designs

2.1. Standard SFD

Themost frequently used computer designs are space-filling designs;
these differ from standard experimental designs due to the position of
the points, which are no longer simply located at the extremities of
the zones of variation of the input variables, but are distributed as uni-
formly as possible throughout the experimental space. Several families
of SFD exist, which differ by the criterion on which the construction
method relies.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2013.11.009&domain=f
http://dx.doi.org/10.1016/j.chemolab.2013.11.009
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Of the families of SFD, Latin hypercube sampling (LHS) [20,21] where
specific constraints determine the positions of points in the design for the
lower dimensions, in general on the factorial axes or faces is extensively
used in simulations. In a LHS of dimensionD andwithN points, each var-
iablewill takeN values uniformly distributed over the factorial axes. Nev-
ertheless, despite the most uniform projection possible for the variables
on the axes, this design criterion does not guarantee good space filling.
Low discrepancy sequences use deterministic algorithms [22,23] to ob-
tain a uniform distribution of points based on the discrepancy criteria
measuring the distance between an empirical distribution of data points
and a theoretically uniform distribution of points. The low discrepancy
sequences include Halton sequences [24], Hammersley sequences [25],
Sobol sequences [26,27] and Faure sequences [14]. Previous studies
[19] have shown that the latter are not optimal in terms of uniformity
as the number of dimensions increases: for example Fig. 1.a,b,c shows
that alignments, lacunae and motifs appear in the transverse planes for
the X8 and X9 variables. A possible alternative, Strauss Designs [15,28],
are generated according to Gibbs' point process (Strauss 1975 [29]),
which is based on the phenomenon of repulsion between particles.
This SFD algorithm assimilates theN points of the designwithN particles
of the same weight, resulting in a uniform distribution of the points
throughout the space, whatever the number of dimensions (Fig. 1d).
However, optimization of the design parameters remains difficult and
time-consuming, and becomes impossible with very high dimensions.
More recently, other algorithms have been described for SFD, such as
the WSP algorithm [16–18] which involves selection of points from a
set of candidate points. This algorithmallows SFDs to be constructed rap-
idly, even at very high dimensions (D N 50). However, precise studies
have shown that these designs suffer from the major problem with
high dimensions [30], i.e., an “empty” central zone (Fig. 1e). It has been
shown that in a distribution of points over a large number of dimensions,
the probability that points are located in the corners of the hypercube
tends to 1 as the number of dimensions increases. This can be explained
by calculating the ratio of volumes between a hypercube of dimension D
and a hypersphere contained within this hypercube.
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
8

X
9

a) Halton sequence 10D

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
b) Sobol 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
8

X
9

X
9

X
9

d) Strauss design 10D

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
e) WSP d

Fig. 1. Projection of points on factorial axes (X8, X9) for space-filling designs in 10 dimensions an
and e) WSP design.
The volume of a hypercube of side 2r and dimension D is given by:

CD ¼ 2rð ÞD:

The volume of a hypersphere of radius r contained within this cube
is:

SD ¼ 2 Dþ1ð Þ=2πD=2

D!!
rD

where ⌈D/2⌉ denotes the largest integer smaller than or equal toD/2 and

D!! ¼
∏
k

i¼1
2i−1ð Þ; if D ¼ 2k−1

∏
k

i¼1
2ið Þ; if D ¼ 2k

:

8>>><
>>>:

We show that the ratio of volumes (SD/CD) (Fig. 2) tends toward 0
when the dimension tends toward +∞, thus the probability of a point
being located within the hypersphere tends toward 0.

This phenomenonhas been confirmed for SFD by studying thedistri-
bution of projections on the factorial axes. For example, for a WSP de-
sign with 205 points in 10D, a graphical representation of the
numbers of points projected on each factorial axis shows an excess of
points at the extreme intervals and an “emptier” center (Fig. 3).

These observations led us to adapt the algorithm so as to increase the
number of points in the center of the space, or more generally, in zones
of interest.

2.2. Adaptive WSP

In theWSP selection algorithm, points are selected from a set of can-
didate points so as to be at a fixed minimal distance (dmin) from each
point in the defined multidimensional parameters space included in
the design.
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The algorithm can be summarized as follows:

Step 1 generate a set of N candidate points
Step 2 calculate the distances (Dij) matrix for the N points
Step 3 choose an initial point O and a distance dmin

Step 4 eliminate the points I for which DOI b dmin. Point O is eliminated
from the set of candidate points and will belong to the final sub-
set.

Step 5 replace point O by the nearest point among the remaining points
Step 6 repeat steps 4 and 5 until there are no more points to choose

from.

The number of points in thefinal subset depends on the value of dmin

and for a variable density of points within the space, this value will not
be constant in the algorithm. Attempts to vary the density of points will
require adjustments to thisminimal distance (dmin) between two points
as a function of the position of the point considered within the space.

2.2.1. Adaptive algorithm to increase density at the center of the space
To resolve the problemswith construction of space filling designs in

high dimensions and to avoid the production of “hollow” centers, we
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Fig. 3. Histograms representing the number of points on the factorial axes f
have adapted the WSP algorithm to progressively vary dmin to increase
the density of points at the center of the space by attributing a lower
dmin value than that applied in the periphery. In this case, dmin will not
be constant but will depend on the position of the point considered rel-
ative to the center of the space. We suggest using a non-linear relation-
ship to calculate the dmin value for each iteration as a function of the
position of the point considered:

dmin ¼ distance between the point studied and the center − minimal distance
maximal distance−minimal distance

� �r

with,minimal distance ¼ minxi∈Xdist xi; xcenterð Þ andmaximaldistance ¼
maxxi∈Xdist xi; xcenterð Þwhere, X = {x1,x2,…,xN} ⊂ [0,1]D for a set of N
points in D dimensions.

Whenwewish to increase the density at the center of the space, two
dmin values must be set. The first, dmin minimum, will be applied to the
center of the space; the second, dminmaximum, will be the dmin value ap-
plied to points located in the periphery. These values depend on the
whished density of points. The value of the exponent r determines the
shape of the curve for variations in dmin (Fig. 4). A higher density will
be generated in the center compared to the periphery of the space for
all values of r. When r is equal to 1, dmin will follow a linear variation.
For a value of r greater than 1, the variation in dmin will favor the selec-
tion of points located at short distances, i.e., dmin will increase slowly,
allowing more points to be conserved close to the center of the space.
Conversely, with r less than 1, a very slight increase in density at the
center of the space will be generated, and fewer points will be selected
in the periphery as longer dmin values will be applied for the points lo-
cated at greater distances from the center, i.e., in the periphery.

Thus, at step 5 of the algorithm presented above, the dmin value is
recalculated for each iteration as a function of how far the point consid-
ered is from the center of the space.

2.2.2. Increasing density in a zone of interest
In some studies, prior knowledge allows a zone of greater interest to

be defined. TheWSP algorithm can also be adapted to enrich this partic-
ular zone of the space. Thus, a first zone can be associated with a short
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in-zone dmin value, while the remainder of the space is associatedwith a
longer out-of-zone dmin value.
3. Results and discussion

3.1. Increasing density at the center of the space

3.1.1. Example in 2D
In this example, the candidate design is a random design in two di-

mensions with 100,000 points. We will compare the matrices obtained
by the standard WSP algorithm with dmin = 0.1 (Fig. 5) and by the
adaptive algorithm, aWSP, for which we set dmin minimum = 0.04 and
dmin maximum = 0.15 (Fig. 5). The influence of the choice of curvature
can be observed on the number of points selected and their distribution
throughout the space.

The difference between the two algorithms is shown in Fig. 5. This 2-
dimensional example is simply presented as an illustration, since at low
dimensions the problemof a hollow center is not encountered. Thus, in-
creasing the density becomesmore advantageous in spaces with higher
numbers of dimensions. The results show that the standard algorithm
distributes the points uniformly throughout the space, while the adap-
tive algorithm increases the density of points at the center of the
Candidate design
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Fig. 5. Comparing standard and adaptive WSP a
space based on theuser-defined r coefficient. For r = 1, a linear increase
in dmin is observed from the center of the space toward the periphery.
For r N 1, the space is populated by applying short dmin values for the
points located at short andmedium distances from the center, resulting
in a very high density at the center. For r b 1, the increase in density at
the center of the space is minimal since the function of variation of dmin

requires a large dmin value to be used for the points located at medium
and large distances from the center of the space.
3.1.2. Example in 10D
To demonstrate how our adaptive algorithm performs at higher di-

mensions, we applied it to a Sobol sequence in 10Dwith 10,000 points;
for this experiment dmin minimum = 0.15, dmin maximum = 1.8, and
r = 1.9. The final design presents 205 selected points, with a greater
density at the center, as shown in the histograms for the number of
points (Fig. 6).

Comparing the histograms from Figs. 3 and 6 reveals that the algo-
rithm to increase point density at the center of the space drastically
modifies how the points are distributed across the variables' space. In-
deed, with the adaptive algorithm the number of points at the center
is higher and the number of extreme points (in the periphery of the
space) is strongly reduced compared to the standard algorithm.
3.1.3. Example in 20D
When the number of dimension increases, the problem of “hollow

center” is intensified. To illustrate the added value of the adaptive algo-
rithm, an application in 20Dwith a Sobol sequence and 20,000 points as
a candidate set is presented. The graphical representation of the repar-
tition of points on factorial axes allows the comparison of the two algo-
rithms (Fig. 7). The number of histogramsbeing important, only someof
them are presented. These graphs highlight the performance of aWSP
algorithm that increases the number of points at the center of the
domain.

Thus, with this adaptive algorithmwe can overcome the curse of di-
mensionality by choosing to increase the density of points at the center
of spaces in high dimensions and this, for any dimension.
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3.2. Increasing density in a zone of interest

Sometimes standard space-filling designs cannot be used, particu-
larly due to various constraints (related to time, experiment feasibility,
etc.). In these cases, a specific area may need to be defined based on
knowledge of the phenomena encountered. Therefore, particular de-
signs must be developed taking these specific constraints into account.
Several examples of non-standard designs using adaptive WSP will
now be presented and discussed in detail.
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(b). Both methods were applied to a Sobol sequence in 20D with 20,000 points.
3.2.1. Spaces with elementary constraints
For this example, we consider random candidate points in 3D and

100,000 points. The zone of interest, where density is to be increased,
is defined by the following constraints: X1 ≥ 0.6, X2 ≥ 0.7, X3 ≤ 0.2.
The dmin value applied in the zone of interest is 0.04, while in the re-
mainder of the space it is 0.15. This leads to the selection of 524 points
(Fig. 8) with a higher density in a specific part of the space.

We next compared the histograms for the numbers of points on each
factorial axis for a designproduced by a standardWSP,with dmin = 0.15
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b) Adaptive WSP
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(Fig. 9a) to those for a design produced by the aWSP increasing the den-
sity of points in the zoneof interest (Fig. 9b). Even though the number of
points is not the same in both cases, it is clear that the zone of interest is
more densely populated, as shown on the histograms by the higher
numbers.
3.2.2. Spaces with relational constraints: non-standard spaces
The constraints set here are relational constraints such as those en-

countered in real-life cases where the ranges of variation for the input
variables are linked. The examples presented below are in two dimen-
sions, but can be generalized to higher dimensions.

When a zone of interest which is restricted to part of a space is to be
studied, the constraints for the zone of interestmust be defined. For this,
we propose use of a standard WSP on a random design in 2D with
100,000 points. We chose to define a zone of interest by the following
constraints: 0.5X1 b X2 b 0.5X1 + 0.5 in which we set dmin = 0.05 to
select 176 points (Fig. 10a).

In the next example, we wished to study the whole space while in-
creasing the density in a zone of particular interest. This contrasts
with the previous example where only this zone was populated. Here,
we applied an evolutive algorithm, i.e., the dmin value is variable across
the space. Thus, considering the same candidate design with a dmin

value for the zone of interest set at 0.05, and a dmin maximum of 0.1 for
the remainder of the space we can select a total of 214 points (Fig. 10b).

We also apply a progressive variation of dmin. This results in no
change to the zone where the density is to be increased, while an inter-
mediate dmin value is applied close to the zone of interest (Fig. 10c).
Thus, three zones are defined, each with a distinct dmin value: in the
zone of interest, dmin = 0.05; for the part of the space surrounding
this zone dmin = 0.07; and in the remainder of the space dmin = 0.1.
This leads to the selection of 240 points.
4. Conclusion

Space-filling designs are now recognized as suitable for computer
experiments, but the main obstacle is with high dimensional spaces
(D N 20). The calculations used in standard designs take too long or pro-
vide a non-uniform spread of points. Therefore, we propose a new type
of space-filling design based on the WSP algorithm, the adaptive WSP
algorithm(“aWSP”). This can be used for non-standard spaces and to in-
crease the density in a defined part of the space. This new algorithm is
very useful as the number of dimensions increases, and can solve the
problem of the “hollow” center or take prior knowledge of particular
phenomena into account so as to focus on a particular area.
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