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Construction of Space Filling Designs in high dimensional space remains difficult since powerful algorithms at
low dimensions become difficult to use at higher dimensions that leads to non-uniform distribution in the factor
space. We propose in this paper two approaches in order to repair designs: Curvilinear Component Analysis
(CCA) and the Wootton, Sergent, Phan-Tan-Luu's algorithm called WSP in order to detect clusters and to fill
gaps. Thus, CCA allows visualization of two or more very closely-spaced points in D dimensions by projecting
them in a 2 dimensions space. Then identified clusters can be eliminated using the WSP algorithm. Moreover,
the presence of gaps in input space could be very problematic since no information on the phenomenon is avail-
able and theWSP algorithmwill be used in order tofill gaps by adding points in the “empty” zones. A new quality
criterion has been proposed in order to follow the reparation steps. Examples in different dimensions are pre-
sented to illustrate these methods.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In many fields, such as petrochemistry, astronomy, and meteorolo-
gy, highly complex simulated models are commonly used to represent
real phenomena as accurately as possible based on calculation codes.
Despite real advances in processor performance, the codes simulating
these phenomena still require considerable calculation times. Indeed,
increasingly realistic calculations involve a large number of input vari-
ables, whose effects can be difficult to predict. It is therefore necessary
to develop a strategy to determine the relevant information to supply
when producing the model, such as ranking the input variables by
order of importance, or having an idea of what the overall phenomenon
modeled should look like. This strategy should be as effective as possible
and should guarantee good quality information, even at high dimen-
sions. Experimental designs can be used to better organize numerical
simulations for this type of approach, and are currently used. However,
the number of input variables – often very large (several tens, or even
hundreds) – and thewide ranges of variation involved have led to stan-
dard experimental designs no longer being really appropriate. This is
partly due to how they distribute points (simulations), mainly placing
them at the extremities of the variables space. This is why, in numerical
simulation, experimental designs known as Space Filling Designs (SFD)
[1–3], or uniform designs, have becomemore popular as they distribute
the points uniformly throughout the input variables space. However,
icum Mediterraneum (CCM VIII
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not all SFD designs are equivalent in terms of the quality criteria re-
flecting the uniformity of point distribution, such as the intrinsic criteria
Mindist [4–6] and Coverage [7]. Mindist is defined as the smallest
Euclidian distance between two points. Coverage quantifies the homo-
geneity of spread of points and can be considered as a standard devia-
tion of minimal distances. These criteria allow the comparison of
several designs built in the same dimension with the same number of
points. The design with the better quality regarding the uniform repar-
tition and the fill-up of the space is characterized by the lowest value of
Coverage and the highest value of Mindist.

In addition, many algorithmswhich are powerful at low dimensions
(D b 10) become difficult to use at higher dimensions (D N 20 or 30).
Thus, low-discrepancy sequences [8–12], such as Faure sequences,
present very poor uniformity criteria at high dimensions, with low
Mindist and high Coverage values. The poor conditioning of these exper-
imental designs leads to non-uniform distribution of points throughout
the space, causing the appearance of clusters and/or gaps.

Poor conditioning, in terms of non-uniform distribution, can also re-
sult from a projection of an experimental design into the sub-space of
influential variables revealed by sensitivity analysis. Indeed, after sensi-
tivity analysis, it can be useful to extract the sub-group of factors identi-
fied as influential for closer study (modeling) of the phenomenon. This
involves keeping the previously performed tests (lines of the design)
and only considering the columns representing influential factors. This
reduction of the space is known as “folding” and can lead to the appear-
ance of clusters or gaps in the new space.

The aim of this study was to develop a method to repair designs
where points are not uniformly distributed throughout the factor
space, either because of poor construction or due to folding of the initial
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space. To do this, we used Curvilinear Component Analysis (CCA) [13,
14] to visualize clusters. Then designs were repaired using theWooton,
Sergent, Phan-Tan-Luu's selection algorithm (WSP) [15–20] to elimi-
nate any clusters identified and to fill gaps, which strongly penalize
the modeling steps. Examples of applications with 2, 8 and 20 dimen-
sions are presented to illustrate these methods.

2. Methods

Themethods presented heremeet the two objectives presented, i.e.,
detect the presence of clusters of points in the experimental space and
eliminate these clusters if necessary while also filling any gaps. We
will present the principles and algorithms for these methods followed
by examples of their application.

2.1. WSP algorithm

2.1.1. Algorithm
The WSP algorithm [15–20] allows uniform designs to be rapidly

constructed with very good quality criteria, like Mindist and Coverage.
In the WSP selection algorithm, the defined multidimensional parame-
ter space is filled with points selected from a set of candidate points
based on a preset minimal distance (dmin) from every other point al-
ready included in the design.

The algorithm can be summarized as follows:

Step 1 generate a set of N candidate points
Step 2 calculate the distances (Dij) matrix for the N points
Step 3 choose an initial point O and a distance dmin

Step 4 eliminate the points I for which: DOI b dmin. Point O is eliminated
from the set of candidate points and will belong to the final
subset

Step 5 point O is replaced by the nearest point among the remaining
points

Step 6 repeat steps 4 and 5 until there are no more points to choose.

A previous studyhas shown [18] that the type of the initial candidate
design (such as a random design, Latin Hypercubes [21–26], low dis-
crepancy sequences [8–12] and Strauss design [27]) has no importance
but only if the number of points is sufficient. The number of candidate
points depends on the number of required points in the final design.
Santiago et al. [18] advise to consider a number of candidate points
equal to at least 5 to 10 times the final set.

Usually the initial point O is chosen as the nearest point of the center
of variable space. However, if the candidate design contains a large
number of points, whatever the initial point results are identical.

The number of points in thefinal subset depends on the value of dmin.
If the dmin value increases then the number of points in the final subset
decreases. The dmin value is determined by iteration until the number of
points desired in the final subset is obtained.

Since previous studies [18] have shown that the WSP algorithm
leads to uniform designs with good criteria (Mindist and Coverage) we
have chosen to consider this design as presented below.

2.1.2. Reference design
We propose to use a reference design to compare the quality of any

designs that could present clusters of points or gaps.
A reference design is constructed with the same dimension and

the same number of points to the design to be assessed. The intrinsic
uniformity criteria for this design are calculated, and the dmin value
(equal to the Mindist criterion) is used to determine the shortest dis-
tance between two points. We then consider that two points separated
by a distance shorter than the dmin value are closer andwill form a clus-
ter. If all the points are separated by this dmin value, then the spread of
points is uniform.
2.1.3. Using the WSP algorithm to detect clusters
Cluster elimination consists in the suppression of points which are

closely-spaced in the variable space. It appeared logical to use the
WSP selection algorithm for this since this algorithm is based on calcu-
lation of distances. The difficulty lies in choosing the dmin value which
will determine the distance from which a cluster is defined. The dmin

value will be chosen according to the intrinsic uniformity criteria of a
reference design constructed from the same conditions in number of
points and dimensions. The Mindist is the smallest distance between
two points and if we assign this value to the dmin then two points sepa-
rated by a shorter distance than dmin are considered as close and will
form a cluster.

2.1.4. Using the WSP algorithm to fill gaps
The absence of points in some zones of the space can be problematic

as it indicates that no information on the phenomenon is available in
this part of the space. The WSP algorithm can be used to fill these
gaps. However, this algorithm, which constructs uniform experimental
designs, is a selection algorithm retaining a set of points from a set of
candidate points. It therefore cannot be used to add points. To overcome
this, we concatenated two experimental designs: the one with gaps
made up of “protected” points, and a second design containing a very
large number of candidate points. The WSP algorithm can then be ap-
plied (with a value of dmin calculated from the Mindist criterion of the
reference design) to select points from the sum of these two designs,
progressively filling the gaps while retaining the protected points.

2.2. Curvilinear Component Analysis (CCA)

2.2.1. Algorithm
The aim of CCA [13,14] is to reproduce the topology of an initial

space of dimension D in a smaller space of dimension p onto which
we wish to project all the data. As the overall topology cannot be
reproduced, CCA tries to conserve the local topology. To do this, we
consider N neurons for which the input vectors {xi; i = 1, …, N} in D
dimensions quantify the input distribution, and for which the output
vectors {yi; i = 1, …, N} in p dimensions (where p b D) should copy
the topology of xi (Fig. 1). To do this, we use the distances between
the xi: Xij = d(xi, xj) where d is the Euclidean distance, and the corre-
sponding output distances are: Yij = d(yi, yj).

During projection, the objective is to make the Yij distances equiva-
lent to the Xij distances. To do this, we minimize the ECCA criterion
(Eq. (1)) characterizing the topological differences between the initial
space and the projected space.

ECCA ¼ 1
2

X
i

X
i≠ j

Xij−Yij

� �2
Fλ Yij

� �
ð1Þ

with Fλ(Yij) :ℝ+ → [0, 1] a monotone decreasing function of Yij. This fa-
vors local conservation of topology. The Fλ (Yij) function is known as the
weighting function or function of cost. Demartines and Hérault (1997)
[14] first suggested taking function F with parameter λ, known as the
critical distance or the neighborhood radius (Fig. 2).

The gradient descent (Eq. (2)) could be used to minimize the ECCA
criterion:

Δyi ¼ ∝
X
j≠i

Xij−Yij

Yij
2Fλ Yij

� �
− Xij−Yij

� �
F

0

λ Yij

� �h i
yi−yj

� �
ð2Þ

with α is the adaptation factor.
However this adaptation rule suffers of several drawbacks. Only one

neuron is adapted at a time; thus the adaptation of all neurons is heavy
and the adaptation rule can fall into local minima.

Instead of moving one vector yi according to the sum of contribu-
tions of all yj, the CCA algorithm proposes to fix randomly a point yi
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Fig. 1. Curvilinear Component Analysis.

142 A. Beal et al. / Chemometrics and Intelligent Laboratory Systems 134 (2014) 140–147
and all yj points placed in a distance lower thanλ around the yi point are
preferentially moved. Theminimization of the ECCA criterion is based on
a simple gradient descent which gives the adaptation rule (Eq. (3):

Δyj ¼ ∝
Xij−Yij

Yij
2Fλ Yij

� �
− Xij−Yij

� �
F

0

λ Yij

� �h i
yi−yj

� �
ð3Þ

The most frequently used functions are F1 and F2:

F1λ Yij

� �
¼ 1; Yij≤λ

0; YijNλ

�
ð4Þ

F2λ Yij

� �
¼ 1

1þ e Yij−λð Þ ð5Þ

For the sample applications presented below, the rectangular func-
tion F1 (Eq. (4)), will be used in the CCA algorithm [14]. This step func-
tion is interesting because it is positive, decreasing and its derivative is
null that implies the possibility to minimize ECCA with a modified sto-
chastic gradient descent (Eq. (6)) easier to compute.

Δyj ¼ αF Yij

� �Xij−Yij

Yij
y j−yi

� �
∀ j≠i ð6Þ

In the case Fλ (Yij) is a step function only the yj points placed in a
lower distance of λ are moved around the yi point.

CCA aims to conserve the shortest distances, and we will use this
technique to visualize clusters defined by two or more very closely-
spaced points. Indeed, two closely-spaced points in the initial space in
D dimensionswill conserve their distances in the space in p dimensions;
if we choose p equal to 2, we will get an image of how the initial points
were distributed in the experimental design space or the high dimen-
sional database.
Yij = λ

Fλ

Yij

F1 (Yij)

F2 (Yij)

Fig. 2. Examples of the cost function Fλ aiming to favor short distances. Yij is the output
Euclidian distance between two output vectors yi and yj, and λ is the neighborhood radius.
2.2.2. Quality criterion
CCAwill thus allow visualization of clusters, but it also appears rele-

vant to have a criterion indicating the presence of clusters. For this, we
constructed a reference experimental design in 2 dimensions with an
identical number of points to the number on the designs to be assessed.
This reference design is generated by applying the WSP algorithm to
uniformly distribute points throughout a space, whatever its dimen-
sionality. The criterion R (Eq. (7)) corresponds to the ratio of the
shortest minimal distances between two points (known as Mindist)
for the CCA design and the reference design.

R ¼ Mindist for the design after CCA projection
Mindist for the reference design

ð7Þ

The value for this ratio is an indicator of the quality of point distribu-
tion. If R tends towards 1, the design is very close to the reference and
the distribution can be considered uniform; in contrast, if R tends to-
wards 0, the experimental design contains clusters.

3. Results and discussion

3.1. 2 dimensional example

In the first instance, we used the cluster-detection and gap-filling
method on a two-dimensional example to make it possible to track
the elimination and/or addition of points visually. To do this, CCA –

which was developed for very high dimensions – was not very useful,
and we only applied theWSP algorithm. Thus, we developed a random
two-dimensional design with 80 points (Fig. 3a.). This design is poorly
distributed as it contains both clusters and gaps, and therefore has
poor intrinsic properties: a low Mindist value (0.006) characteristic of
the presence of clusters and a high Coverage (0.467) which indicates
heterogeneous distances (Table 1). In parallel, we used the WSP algo-
rithm to build a reference uniform experimental design with 80 points,
to determine the dmin value (dmin = 0.108) below which two points
would be considered too closely-spaced. These pointswill be eliminated
(Fig. 3b.).

Through this process, 47 points were eliminated, leading to an im-
provement in the uniformity of the design, characterized by an increase
in theMindist value (from 0.006 to 0.110) and a reduction in the Cover-
age value (from 0.467 to 0.191). The Box Plots [28] for the minimal
distances also show this improvement, by comparing the minimal
distances for the reference designwith 80points (Fig. 4a.) and the initial
design with clusters and gaps (Fig. 4b.) to the designs after repair
(Fig. 4c. and d.).

We know that with a Space Filling Design, the distances between
points are homogeneous. This results in a very reduced interquartile
range, resulting in superposition of the minimal and maximal values
in the Box Plot (Fig. 4a.).
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Fig. 3. Graphical representation of point distribution with: (a.) initial design, (b.) design without clusters, and (c.) repaired design.
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On the other hand, the Box Plot for the random design (Fig. 4b.)
shows a high degree of dispersion of the minimal distances, indicating
the presence of clusters and gaps.

The representation of the minimal distances for the random design
after elimination of clusters (Fig. 4c.) shows a shift towards greater
distances, with a minimal value equal to that of the reference design.
However, the total range remains broad, due to the presence of gaps.
The next stepwill therefore be to fill these gaps. To do this, we protected
the 33 points remaining after cluster elimination, and added a group of
1000 candidate points. The WSP algorithm was then applied using
the same dmin value as the reference design. The design repaired by
cluster-suppression and gap-filling, contains 72 points and presents
good uniformity criteria (Mindist = 0.108 and Coverage = 0.050),
close to those of the reference design (Table 1, Fig. 3d.).
3.2. 20 dimensional example

After studying an example in 2D, we nowwish to apply these exper-
imental design repair methods to cases with higher dimensionality.
Construction of SFD relies on algorithms which are effective in low di-
mensions (D b 10), but whose quality decreaseswith increasing dimen-
sionality (20D, 30D, etc.) due to the appearance of empty zones (curse
of dimensionality [29]) and/or clusters.

For this study, we constructed several designs in 20D with 200
points: random design and SFD such as low-discrepancy sequences
(Sobol' sequence and Faure sequence). Low-discrepancy sequences
[8–12] use deterministic algorithms to obtain a uniform distribution of
points based on the discrepancy criteria [30] measuring the distance
between an empirical distribution of data points and a theoretically uni-
form distribution of points. Previous studies [18] have shown that the
latter are not optimal in terms of uniformity (alignments, lacunae and
motifs could appear) as the number of dimensions increases. We also
constructed a design with clusters (the points constituting the clusters
are represented by red crosses), generated by adding very closely-
spaced points to a SFD (see Fig. 5). For each design, the standard unifor-
mity criteria, Mindist and Coverage, can be calculated (Table 2).

The lowMindist values for somedesigns indicate a very close spacing
between points. A simple graphical representation to visualize these
Table 1
Mindist and Coverage values for the random experimental 2D design before and after
repair.

Number of points Mindist Coverage

Reference design 80 0.108 0.033
Random design 80 0.006 0.467
Design after cluster suppression 33 0.110 0.191
Repaired design 72 0.108 0.050
distributions is of very limited interest, as it is only possible to view sec-
tions of the design (Fig. 5) making it impossible to visualize clusters.

If CCA is applied to the 20D space the points can be projected onto a
two-dimensional space (Fig. 4). The reduction in dimensionality using
CCA, given that short distances are conserved, will allow any clusters
present to be rapidly identified.

In Fig. 4a. and b. no clusters are observed but we cannot conclude
about the quality of the spread of points. Fig. 4d. clearly shows a
regrouping of points corresponding to the voluntarily added clusters,
and Fig. 6c. shows the known alignments of points in the Faure series
at high dimensions. To complete this visual information, we calculated
the R ratio: to do this, the Mindist for a uniform reference design in 2D
with 200 points (Mindist= 0.066)was compared to that of each design
after CCA projection (Table 3).

This analysis reveals a wide variation in ratio values, indicating
that the designs considered are not equivalent in terms of uniformity.
The poorest designs are: Faure sequence and the design with clusters,
which both present a very low R ratio, confirming the presence of the
clusters detected in the graphical representation (Fig. 6).

3.2.1. Repairing 20D designs

3.2.1.1. Step 1: Cluster elimination. To repair these designs, we can start
by eliminating clusters. In this case, the reference dmin valuemust be de-
rived from a reference 20D design with 200 points. This will be used to
detect clusters and to eliminate all the points located at a shorter dis-
tance than this reference distance. Results for this step are reported in
Table 4, where we observe that the number of points remaining after
cluster suppression is very low for low-discrepancy sequences. This in-
dicates that these designs always present accumulations of points in
specific zones of the factor space. We also observe that for the design
with clusters, this step successfully eliminated the voluntarily created
clusters.

3.2.1.2. Step 2: Filling gaps. After eliminating the clusters, the remaining
points are considered to be protected points. To these, we add a design
with 10,000 candidate points. We then applied theWSP selection algo-
rithm to fill the gaps using these candidate points, based on the proce-
dure described in paragraph 2.1.4. This step results in the addition of
many points to designs which had large numbers of clusters, such as
low-discrepancy sequences, and random designs to a lesser extent.

3.2.1.3. Step 3: Application of the CCA and ratio calculation. Once the clus-
ters had been eliminated and the gaps filled, the various designs were
projected by CCA to calculate the Mindist in the 2D projection space.
For each design, the R ratio of theMindistwas calculated taking the ref-
erence Mindist for an equivalent number of points in 2D (Table 4).
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Through these three successive steps, it was possible to eliminate
clusters, fill gaps and finally measure a criterion to assess the quality
of the point distribution after repair.

All the repaired designs present ratios close to 0.80 (Table 4), thus
guaranteeing a good distribution of the points throughout the factor
space. Thus, designs such as the Faure sequence and designs with clus-
ters, which were initially considered bad, can be repaired using this
method. However, since very few of the initial points remain after clus-
ter suppression from Sobol' and Faure sequence designs, the ratios after
repair should be interpreted with caution as, in these cases, the gap-
filling phase could in fact be considered a design-reconstruction step.

From results in Table 4, a commentmay be added about the elimina-
tion of points. In Fig. 6a. and b, no clusters are observed butmany points
are eliminated by the WSP algorithm. This phenomenon can be ex-
plained by very near points, but not necessary as clusters. For example
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Fig. 5.Designwith clusters in 20 dimensions. (a.) viewed in the (X1, X2) plane, (b.) in the (X1, X3

clusters generated by adding very-close points to a WSP design.
the points can be only very near and aligned. To detect this phenome-
non, the best way is to compare the initial Mindist criterion (Table 2:
Mindist = 0.867 and 0.925 for respectively the random design and
Sobol' sequence) to Mindist of the reference design in 20D with 200
points which is equal to 1.527.Mindist of random design and Sobol' se-
quence in 20 dimensions are lower thanMindist of reference design that
means that the spread of points of these designs is not uniform. Thus,
the points are closer than the points of reference design, but not appear
as clusters.

3.3. Repairing experimental designs after folding into a sub-space

The first step in the study of a complex phenomenon is often a sen-
sitivity analysis. This consists in rapidly identifying the most important
variables so as to eliminate those not affecting the response. This step
b
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Table 2
Mindist and Coverage values for the designs studied in 20D with 200 points.

20D—200 points Mindist Coverage

Random design 0.867 0.094
Sobol' sequence 0.925 0.087
Faure sequence 0.194 0.521
Design with clusters 0.315 0.215

Table 3
Mindist criteria and ratios after CCA projection.

Mindist
after CCA

Mindist of reference
design 2D—200 points

Ratio R

Random design 0.026 0.066 0.40
Sobol' sequence 0.037 0.56
Faure sequence 0.007 0.10
Design with clusters 0.013 0.20
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is crucial when a very large number of potentially influential variables
exist, and where only a small number of variables are to be kept for
the subsequent steps through work in a sub-space. This step, known
as refolding, may modify how the points are distributed across the ex-
perimental design. The distribution might be uniform in the initial
space, but non-uniform in the sub-space of retained variables. To illus-
trate this case, we chose to study a function that is widely used in the lit-
erature, the g-Sobol' function [31,32], which is defined by the following
relationship (Eq. (8)), whatever the k dimensions:

y ¼ ∏
k

j¼1
g j x j

� �
ð8Þ

with g j x j

� �
¼ 4x j−2j jþa j

1þa j
where aj = {0,1,4,5,9,99,99,99,99} and xj ∈[0,1].

In this case g-Sobol' function is studied in a spacewith 8 dimensions,
thus k=8 in the Eq. (8). The section view of this function (Fig. 7) shows
its specificity: pronounced irregularities.

For this study, we constructed a WSP design with 1600 points. We
first performed a sensitivity study according to the Improved Sensitivity
THrough Morris Extension method called ISTHME [33], which is based
on classical Morris's method [34] but uses any set of points and more
particularly a uniform design. This method allows the classification of
factors in three groups: factors having (1) negligible effects, (2) linear
a

c
X1 CCA

X
2 

C
C

A

X1 CCA

X
2 

C
C

A

Fig. 6. CCA applied to high dimensionality designs (20D—200 points). (a.) random design, (b.)
sented in the projection space.
and additive effects or (3) nonlinear or interaction effects. As in classical
Morris's method, elementary effects dj(y) (Eq. (9)) are calculated for
each factor Xj:

dj yð Þ ¼
y x1;…; xj−1; xj þ Δ j; xjþ1;…; xk
� �

−y xð Þ
Δ j

ð9Þ

where Δj is a value in {1/(p− 1),…,1-1/(p− 1)}, with p the number of
levels.

According to the values of themean of the absolute value of elemen-
tary effects μ⁎j (y) and the standard deviation σj (y), the factors are clas-
sified as follows:

- low values of μ⁎j (y) and σj (y) characterize factors with negligible
effects (1),

- a high value of μ⁎j (y) and a low value of σj (y) characterize factors
with linear effects (2),

- high values of μ⁎j (y) and σj (y) characterize factors with nonlinear
or interaction effects (3).

In this study, the ISTHME method shows that only two variables X1
and X2 are detected as influential. The initial design in 8 dimensions
with 1600 points was then “refolded” in the (X1, X2) sub-space and
b

X1 CCA

d

X
2 

C
C

A

X1 CCA

X
2 

C
C

A

Sobol' sequence, (c.) Faure sequence, and (d.) design with clusters. All designs are repre-



Table 4
Comparing ratios before and after repairing 20D designs.

Ratio R for the
initial designs

Number of points Mindist after CCA
and full repair

Mindist reference for
the number of points
after full repair

Ratio R after
full repair

After cluster
elimination

After filling gaps

Random design 0.40 42 188 0.054 0.066 0.82
Sobol' sequence 0.56 6 200 0.053 0.066 0.80
Faure sequence 0.10 3 199 0.052 0.064 0.81
Design with clusters 0.20 185 211 0.053 0.062 0.85
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must be assessed to determine its uniformity before subsequent use. To
do this, a uniform design with 1600 points in 2 dimensions was gener-
ated as a reference design. Its dmin value will be considered as the ideal
minimal distance between two points. Using this to eliminate clusters
retains 863 of the 1600 initial points; these remaining points are the
protected points. The gaps can then be filled using the WSP algorithm
to add 615 points. To illustrate this distribution, we represent the min-
imal distances as a Box Plot for each step (Fig. 8).

As the design is repaired, the minimal distances improve, and
therefore the point distribution throughout the space becomes more
uniform. Indeed, the Box Plot is refined, showing a closer correlation be-
tween the quantile values, which eventually stabilize at close to the
values of the uniform reference design.
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Fig. 8. Box Plot representations of minimal distances. (a.) for the reference design, (b.) for the
“repaired” design.
4. Conclusion

Space Filling Design is increasingly used, particularly in the field of
numeric simulation, but its performance in higher dimensions remains
limited. Indeed, studies have shown that algorithmswhich are powerful
at low dimensions (D b 10) becomedifficult to use at higher dimensions
(D N 20 or 30); this leads to poor uniformity. This non-uniform distribu-
tion in the factor space can lead to accumulation of points in specific
zones, or to the appearance of gaps, which canpenalize studies of the re-
sponse surface. We show here that Curvilinear Component Analysis can
be used to detect the presence of clusters, which can then be eliminated
using theWSP algorithm if necessary. WSP can also be used to fill zones
where gaps are present. These methods were tested on various cases,
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ariables obtained using the g-Sobol’ function.
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“refolded” design, (c.) for the “refolded” design after cluster elimination, and (d.) for the



147A. Beal et al. / Chemometrics and Intelligent Laboratory Systems 134 (2014) 140–147
and are shown to be promising while also remaining easy to use and
rapid to implement, even at higher dimensions.

Conflict of interest

None.

References

[1] K.T. Fang, D.K.J. Lin, P. Winker, Y. Zhang, Uniform design: theory and application,
Technometrics 42 (2000) 237–248.

[2] K.T. Fang, R. Li, A. Sudjianto, Design and Modeling for Computer Experiments,
Chapman & Hall/CRC, 2006.

[3] T.J. Santner, B.J. Williams, W. Notz, The Design and Analysis of Computer Experi-
ments, Springer, 2003.

[4] M.E. Johnson, L.M. Moore, D. Ylvisaker, Minimax and maximin distance designs, J.
Stat. Plan. Infer. 26 (1990) 131–148.

[5] V.C.P. Chen, K.-L. Tsui, R.R. Barton, M. Meckesheimer, A review on design, modeling
and applications of computer experiments, IIE Trans. 38 (2006) 273–291.

[6] M.W. Trosset, Approximate maximin distance designs, Proc. Sect. Phys. Eng. Sci,
1999, pp. 223–227.

[7] M. Gunzburger, J. Burkhardt, Uniformity measures for point samples in hypercubes,
http://people.sc.fsu.edu/jburkardt/pdf/ptmeas.pdf 2004.

[8] H. Faure, Discrépances de suites associées à un système de numération (en dimen-
sion un), Bull. Soc. Math. Fr. (1981) 142–182.

[9] J.H. Halton, On the efficiency of certain quasi-random sequences of points in evalu-
ating multi-dimensional integrals, Numer. Math. 2 (1960) 84–90.

[10] J.M.Hammersley,Monte Carlomethods for solvingmultivariable problems, Ann.N. Y.
Acad. Sci. 86 (1960) 844–874.

[11] I.M. Sobol, On the distribution of points in a cube and the approximate evaluation of
integrals, USSR Comput. Math. Math. Phys. 7 (1967) 86–112.

[12] I.M. Sobol, Uniformly distributed sequences with an additional uniform property,
USSR Comput. Math. Math. Phys. 16 (1976) 236–242.

[13] P. Demartines, Analyse de données par réseaux de neurones auto-organisés, (Thesis)
Institut National Polytechnique de Grenoble, 1994.

[14] P. Demartines, J. Herault, Curvilinear component analysis: a self-organizing neural
network for nonlinear mapping of data sets, IEEE Trans. Neural Netw. 8 (1997)
148–154.

[15] M. Sergent, Contribution de la Méthodologie de la Recherche Expérimentale à
l'élaboration de matrices uniformes: application aux effets de solvants et de
substituants, (Thesis) 1989. (Marseille).
[16] M. Sergent, R. Phan Tan Luu, J. Elguero, Statistical analysis of solvent scales, part 1,
An. Quím. Int. Ed. 93 (1997) 71–75.

[17] M. Sergent, R. Phan Tan Luu, R. Faure, J. Elguero, Statistical analysis of solvents scales,
part 2, An. Quím. Int. Ed. 93 (1997) 295–300.

[18] J. Santiago, M. Claeys-Bruno, M. Sergent, Construction of space-filling designs using
WSP algorithm for high dimensional spaces, Chemom. Intell. Lab. Syst. 113 (2012)
26–31.

[19] J. Santiago, Développement de nouveaux plans d'expériences uniformes adaptés à la
simulation numérique en grande dimension, (Thesis) Aix Marseille, 2013.

[20] A. Beal, M. Claeys-Bruno, M. Sergent, Constructing space-filling designs using an
adaptive WSP algorithm for spaces with constraints, Chemom. Intell. Lab. Syst.
133 (2014) 84–91.

[21] N.A. Butler, Optimal and orthogonal Latin hypercube designs for computer experi-
ments, Biometrika 88 (2001) 847–857.

[22] A.B. Owen, Orthogonal arrays for computer experiments, integration and visualisa-
tion, Stat. Sin. 2 (1992) 439–452.

[23] M. Stein, Large sample properties of simulations using Latin hypercube sampling,
Technometrics 29 (1987) 143–151.

[24] B. Tang, Orthogonal array-based Latin hypercubes, J. Am. Stat. Assoc. 88 (1993)
1392–1397.

[25] B. Tang, A theorem for selecting oa-based latin hypercubes using a distance criteri-
on, Commun. Stat.-Theory Meth. 23 (1994) 2047–2058.

[26] K.Q. Ye, Orthogonal column Latin hypercubes and their application in computer ex-
periments, J. Am. Stat. Assoc. 93 (1998) 1430–1439.

[27] J. Franco, Planification d'expériences numériques en phase exploratoire pour la sim-
ulation des phénomènes complexes, (Thesis) Ecole Nationale Supérieure des Mines
de Saint-Etienne, 2008.

[28] J.W. Tukey, Exploratory data analysis, 1977.
[29] M. Köppen, The curse of dimensionality, 5th Online World Conf. Soft Comput. Ind.

Appl, 2000, pp. 4–8.
[30] E. Thiémard, Sur le calcul et la majoration de la discrépance à l’origine, (Thesis)

Ecole Polytechnique fédérale de Lausanne, 2000.
[31] A. Saltelli, I.M. Sobol’, About the use of rank transformation in sensitivity analysis of

model output, Reliab. Eng. Syst. Saf. 50 (1995) 225–239.
[32] A. Saltelli, E.M. Scott, Sensitivity Analysis, J. Wiley & Sons, New York; Chichester;

Weinheim, 2000.
[33] J. Santiago, B. Corre, M. Claeys-Bruno, M. Sergent, Improved sensitivity through

Morris extension, Chemom. Intell. Lab. Syst. 113 (2012) 52–57.
[34] M.D. Morris, Factorial sampling plans for preliminary computational experiments,

Technometrics 33 (1991) 161.

http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0005
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0005
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0130
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0130
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0015
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0015
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0020
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0020
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0025
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0025
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0135
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0135
http://people.sc.fsu.edu/jburkardt/pdf/ptmeas.pdf
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0145
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0145
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0030
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0030
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0035
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0035
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0040
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0040
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0045
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0045
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0050
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0050
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0055
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0055
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0055
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0060
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0060
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0060
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0150
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0150
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0155
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0155
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0065
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0065
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0065
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0070
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0070
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0160
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0160
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0160
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0075
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0075
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0165
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0165
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0080
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0080
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0085
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0085
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0090
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0090
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0095
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0095
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0100
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0100
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0100
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0105
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0170
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0170
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0110
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0110
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0115
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0115
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0175
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0175
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0120
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0120
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0125
http://refhub.elsevier.com/S0169-7439(14)00065-3/rf0125

	Repairing uniform experimental designs: Detection and/or elimination of clusters, filling gaps
	1. Introduction
	2. Methods
	2.1. WSP algorithm
	2.1.1. Algorithm
	2.1.2. Reference design
	2.1.3. Using the WSP algorithm to detect clusters
	2.1.4. Using the WSP algorithm to fill gaps

	2.2. Curvilinear Component Analysis (CCA)
	2.2.1. Algorithm
	2.2.2. Quality criterion


	3. Results and discussion
	3.1. 2 dimensional example
	3.2. 20 dimensional example
	3.2.1. Repairing 20D designs
	3.2.1.1. Step 1: Cluster elimination
	3.2.1.2. Step 2: Filling gaps
	3.2.1.3. Step 3: Application of the CCA and ratio calculation


	3.3. Repairing experimental designs after folding into a sub-space

	4. Conclusion
	Conflict of interest
	References


