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Mixed-level supersaturated designs are designs in which the number of coefficients to estimate is greater
than the number of experiments. This type of design is useful in the rapid preliminary investigation of a pro-
cess with a large number of potentially relevant factors but with only a few of them having important effects.
The purpose of this project was to determine the active parameters on a chemical process. A mixed-level su-
persaturated design of 12 experiments was carried out, allowing us to screen 17 two-level factors and 5
three-level factors. χ²-optimality of the design was confirmed. In order to verify the results, a 40-run matrix
was built. One parameter was identified as very active in both analyses, and several others were suspected to
have an effect on the process. Some differences were observed in the results, regarding the detection of the
least influent factors. These are likely due to the loss of information generated by the reduction of runs in the
supersaturated design, as this kind of design allows an important reduction of the number of experiments.
Further studies should be considered to confirm the activity of some factors.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Screening strategies are effective methods to identify active factors,
i.e. influent parameters, in a process, and allow the evaluation of the ro-
bustness of a process [1]. They are widely used for the analysis of indus-
trial processes. If the number of factors becomes very large, the number
of experiments required by classical screening designs may be imprac-
tical, especially if the experimental runs are expensive or time consum-
ing (as with crash tests for example). In such cases, if the probability for
a factor to be influent is very low (less than 10%, which is called the
“sparsity effect”), a supersaturateddesignmay be considered. In this de-
sign the number of effects to be estimated is higher than the number of
experiments. This kind of design is less expensive and time consuming
than classical screening matrices.

First developed in the 1950s by Satterthwaite [2] as a random bal-
ance and Booth and Cox [3] in a systematic manner, these designs
have recently become increasingly popular. Nevertheless, most studies
have focused on two-level supersaturated designs (see for example
[4–19]), with several extensions to three-level [20,21] or multi-
level [22,23] supersaturated designs. Much more recently mixed-level
supersaturated designs were tested [24–28], and were found adapted
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in cases when the response is based on a polynomial response surface
model or in situations where factors are categorical variables.

In this project, realized in the Chemical Development Automation
Laboratory of Sanofi-Aventis in Vitry sur Seine, a mixed-level super-
saturated (asymmetric) design was carried out in order to estimate
the robustness of an organic synthesis. A 12-run supersaturated de-
sign was constructed, allowing us to screen 17 two-level factors and
5 three-level factors. As this mixed-level supersaturated design is
not conventional and has seldom been studied, a 40-run screening
matrix (D-optimal, [29]) was built in order to compare the results.
This matrix was a complement of the supersaturated design: all of
the experiments of the supersaturated design were included in this
D-optimal matrix.

2. Application of a supersaturated design to an organic synthesis

2.1. Synthesis

The study applies to the industrial synthesis of PBA salt, an inter-
mediate of synthesis of an anti-cancer drug. A mixed-level supersatu-
rated design was carried out in order to evaluate the influent effects
on the process, and more especially the purity of the salt obtained.

2.1.1. Reaction
The PBA salt is made using the reaction presented in Fig. 1.

http://dx.doi.org/10.1016/j.chemolab.2012.01.005
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Fig. 1. Synthesis reaction.

Table 1
Factors and experimental domain of interest.

Factors Number
of levels

Level 1 Level 2 Level 3

U1 Dithiopyridine
quantity

2 1.47 eq 1.53 eq

U2 Solvent quantity 2 4.5 V 5.5 V
U3 Stirring time 1 2 5 min 15 min
U4 Temperature 1 2 −3 °C +3 °C
U5 Acid-thiol quantity 2 0.98 eq 1.02 eq
U6 Acid-thiol adding

time
2 5.5 min 16.5 min

U7 Catalyst quantity 2 0.01 eq 0.03 eq
U8 Stirring time 2 2 4.5 h 5.5 h
U9 Concentration: end

volume
2 0.4 V0 0.6 V0

U10 Rinsing 1 2 0.14 V 0.16 V
U11 Washing 1 2 0.48 V 0.53 V
U12 Rinsing 2 2 0.14 V 0.16 V
U13 Temperature 2 2 12 °C 18 °C
U14 Dicyclohexylamine

quantity
2 1.17 eq 1.22 eq

U15 Dicyclohexylamine
dosing time

2 7.5 min 22.5 min

U16 Temperature 3 2 −3 °C +3 °C
U17 Washing 2 2 1.43 V 1.58 V
U18 Dithiopyridine

supplier
3 Alfa Aesar®

98%
Aldrich® 98% Acros® 98%

U19 Solvent supplier 3 SDS® 99.8% Acros® 99.5% Prolabo®
99.9%

U20 Catalyst type 3 Catalyst 1 Catalyst 2 Catalyst 3
U21 Dicyclohexylamine

supplier
3 Acros® 99% Alfa Aesar®

98%
Aldrich®
99%

U22 Stirring time 3 3 15 h 18 h 23 h
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2.1.2. Protocol
2,2′-Dithiopyridine (1.5 eq) was dissolved in a solvent (1) (5 V/

dithiopyridine) and stirred for 10 min. The solution was cooled
down to 0±3 °C, and a catalyst added (0.02 eq). A solution of acid-
thiol (1 eq) was then added at a temperature below 3 °C. The reaction
mixture was stirred for 5 h at 0±3 °C and then concentrated under
reduced pressure to half its initial volume V0. The concentrated mix-
ture was stirred for 1 h at 0±3 °C and the precipitated by-product
(thiopyridone) was isolated by filtration. Dicyclohexylamine (1.2 eq)
was then added to themother liquor at 15±3 °C, and themixture cooled
down to 0±5 °C. The mixture was then stirred for 5 h at 0±3 °C. The
solid product (dicyclohexylamine salt)was isolated by filtration, washed
with solvent (1) (2×12.5 V) and dried under reduced pressure at 40 °C.
The purity of the dried product was determined by HPLC.

This basic protocol was adapted to each experiment, in order to
allow the variations of the studied factors.

2.1.3. Equipment
All experiments of the supersaturated design and some of the D-

optimal design were carried out using a multi-reactors Polyblock
H.E.L®, piloted by WinIso software, and reactors volumes were either
of 150 mL or 100 mL capacities. The Polyblock can receive 4 reactors
independently controlled in terms of temperature and stirring.
Some of the experiments of the 40-run were done on an Auto-
MATE H.E.L®, also piloted by WinIso, using 100 mL and 50 mL reac-
tors. The purity of the obtained salt was then determined by an
HPLC analysis, using a Waters® Alliance equipped by an XTerra RP8
150*4.6 mm–3.5 μm column. Data acquisition was made via Waters
Empower® software. Results were obtained thanks to an external cal-
ibration, by comparison of the sample's chromatogram to a known
standard, considered 100% pure. 20 μL of sample solution were eluted
by a mixture of acetonitrile and water at 1 mL/min flow for 35 min,
and analysed in UV detection, at 290 nm.

2.2. Experimental design

2.2.1. Factors and domain of interest
In this study, 22 factors were studied, and one response (the purity

of the isolated salt) was analysed. The factors were chosen based on
the reference protocol. Three different suppliers were used for each of
the reagents and three different catalystswere tested. Factors and levels
are shown in Table 1 in which eq is themolar equivalent in acid-thiol, V
is volume in mL per g of dithiopyridine and V0 is the initial volume.

One response, the purity of the PBA salt, was analysed using the
supersaturated design.

2.2.2. Construction of the supersaturated design
The mixed-level supersaturated design (N=12) was constructed

according to Yamada [24] using C2 and D3 designs (constructed by
lexicographical enumeration and computer search respectively) in
association with the generating designs T2

2 and T23, also proposed
by Yamada [24]. These matrices are presented below.

C2 ¼

1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 2 2 2 2 2
1 2 2 2 1 1 1 2 2 2
2 1 2 2 1 2 2 1 1 2
2 2 1 2 2 1 2 1 2 1
2 2 2 1 2 2 1 2 1 1

0
BBBBBB@

1
CCCCCCA

D3 ¼

1 1 1 1 1
2 1 2 3 3
3 2 3 3 1
1 2 2 2 2
2 3 3 1 2
3 3 1 2 3

0
BBBBBB@

1
CCCCCCA

T2
2 ¼ 0 0

0 1

� �
T2

3 ¼ 0 0
1 2

� �

A matrix C=T22⊕C2 is then generated, in which the operator⊕-
determines the ((i−1)lm+u, (j−1)p+v) element of the matrix C
by mod(tij+cuv−1,l)+1 , with l number of levels of T22 (in this
case l=2), m number of levels of T23 (here m=3), p number of



Table 2
Supersaturated design.

Exp X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 2 3 3
3 1 2 2 2 1 1 1 2 2 2 1 2 2 2 1 1 1 3 2 3 3 1
4 2 1 2 2 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 2 2
5 2 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2 2 3 3 1 2
6 2 2 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 3 3 1 2 3
7 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
8 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 3 2 3 1 1
9 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 3 1 1 2
10 2 1 2 2 1 2 2 1 1 2 1 2 1 1 2 1 1 2 3 3 3 3
11 2 2 1 2 2 1 2 1 2 1 1 1 2 1 1 2 1 3 1 1 2 3
12 2 2 2 1 2 2 1 2 1 1 1 1 1 2 1 1 2 1 1 2 3 1
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columns of C2, and tij and cuv positions (i,j) and (u,v) of the elements
of T22 and C2 respectively. In the same way, a matrix D=T23⊕D3 is
generated, in which⊕determines the ((i−1)lm+u,(j−1)q+v) ele-
ment of the matrix D by mod(tij+duv−1,m)+1, with q number of
columns of D3, and tij and duv positions (i,j) and (u,v) of the elements
of T2

3 and D3 respectively. A 220310//12 candidate matrix was then
obtained by the juxtaposition of the matrix C and the matrix D. By de-
leting unnecessary columns, we obtain a 21735//12 supersaturated
design. This resulting mixed-level supersaturated design is presented
in Table 2.

2.2.3. Construction of the D-optimal design
The complementary 40-run matrix is a traditional D-optimal ma-

trix which includes the supersaturated design experiments [29]. A
conventional screening design 21735 would contain 36 runs, to
which we should add the 12 experiments already carried out in the
supersaturated design: 48 distinct experiments are obtained. In
order to reduce the number of experiments, the Fedorov algorithm,
used by NemrodW® [30], selected a design with fewer experiments
and a satisfactory quality, including all the experiments from the su-
persaturated design. In this case study, the inflation factor was chosen
as the acceptability criterion [29]. This factor must be equal or inferior
to 2 (in this case) to be accepted. A 40-run matrix is obtained via this
algorithm, as shown in Fig. 2. This matrix is presented in Table 3, in
which the experiences 1 to 12 are the ones from the supersaturated
design. The experiences marked with an apostrophe are repetitions.
The lines in italics with a ‘P’ in the second column are the experiments
done using the Polyblock, and the others are the ones carried out
using the Auto-MATE, at a different scale.

2.2.4. Quality criterion χ²
Several quality criteria have been proposed in the bibliography,

such as the degree of saturation [24], the χ² criterion [24], the E(fNOD)
criterion [27,25,31,32]. In most of these criteria, the point is to evaluate
the non-orthogonality of the matrix. In order to simplify the analysis,
only one criterion was studied: the χ²-optimality criterion, proposed
by Yamada [26] in the publication used for the construction of the
mixed-level supersaturated design. This criterion should be minimized
Fig. 2. Inflation factor.
to obtain the best matrix possible in term of orthogonality. It is pre-
sented in Eq. (1):

χ2 c; dð Þ ¼ ∑
a∈ 1;…;lf g

∑
b∈ 1;…;mf g

nab c; dð Þ−n= lmð Þ
� �2

n= lmð Þ ð1Þ

In which c is a column from the matrix C presented above, d a col-
umn from the matrix D, l the number of levels of the matrix C and m
the number of levels of the matrix D. n is the number of runs, and
nab(c,d) the number of lines of the matrix n×2 formed by (c,d)
which present as modalities (a,b).

Several variations of the χ² optimality criterion have been calculated, for
the full constructed supersaturated design and each of itsmatrices C and D.

Let C be a l levels matrix, including n runs and p columns, (ci,cj)
columns of C, and D am levels matrix, including n runs and q columns,
(di, dj) columns of D. An average χ² is calculated for each of these ma-
trices and for all couples (c,d).

Averageχ2 of the matrix C

aveχ2
l;l ¼ ∑

1≤i≤j≤p
χ2 ci; cj

� �
=

p
2

� � ð2Þ

Averageχ2 of the matrixD

aveχ2
m;m ¼ ∑

1≤i≤j≤q
χ2 di;dj

� �
=

q
2

� � ð3Þ

Averageχ2 of all couples c; dð Þ

aveχ2
l;m ¼ ∑

1≤i≤p
∑

1≤j≤q
χ2 ci;dj

� �
= pqð Þ

ð4Þ

Let χ² sum be the sum of all the χ² calculated in the previous equa-
tions (Eqs. (2) to (4)), and Ds the degree of saturation.

Saturation degree

Ds ¼ l−1ð Þpþ m−1ð Þq
n−1

ð5Þ

The next criterion, χ²-eff, measures the capacity of the matrix to
reach χ² optimality:

χ2�efficiency

χ2
eff ¼

Ds Ds−1ð Þn n−1ð Þ=2
χ2
sum

ð6Þ

All of these criteria have been calculated, and are presented in Table 4.
The design is optimal in terms of orthogonality if the criteriaMax and Ave
are minimised, and if the criterion χ²-eff is as close as 1 as possible. In the
presented case, the quality of the constructed supersaturated design was
verified, as we have χ²-eff=0.74, which is satisfactory.

image of Fig.�2


Table 3
D-optimal matrix. The lines in italics with a ‘P’ in the second column correspond to the experiments done using the Polyblock, and the others are the ones carried out using the Auto-
MATE, at a different scale. The repeated experiments are marked with an apostrophe.

Exp X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22

1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 P 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 2 3 3
3 P 1 2 2 2 1 1 1 2 2 2 1 2 2 2 1 1 1 3 2 3 3 1
4 P 2 1 2 2 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 2 2
5 P 2 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2 2 3 3 1 2
6 P 2 2 2 1 2 2 1 2 1 1 2 2 2 1 2 2 1 3 3 1 2 3
7 P 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
8 P 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 3 2 3 1 1
9 P 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 3 1 1 2
10 P 2 1 2 2 1 2 2 1 1 2 1 2 1 1 2 1 1 2 3 3 3 3
11 P 2 2 1 2 2 1 2 1 2 1 1 1 2 1 1 2 1 3 1 1 2 3
11′ 2 2 1 2 2 1 2 1 2 1 1 1 2 1 1 2 1 3 1 1 2 3
12 P 2 2 2 1 2 2 1 2 1 1 1 1 1 2 1 1 2 1 1 2 3 1
13 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 3 3 2 2 3
14 P 2 2 2 1 1 1 2 1 2 1 2 2 2 1 1 1 1 2 2 3 3 2
15 P 1 2 1 2 2 2 2 1 1 1 2 1 1 2 2 2 2 3 3 3 3 2
16 2 1 2 2 2 1 2 1 1 2 1 1 1 2 2 1 1 2 2 2 2 3
17 1 1 1 2 1 1 2 2 2 2 2 2 1 2 1 1 1 3 1 1 2 1
18 2 2 1 1 2 1 1 2 1 2 2 2 1 2 1 1 1 1 3 2 1 2
19 P 1 2 2 1 1 2 2 2 1 2 1 1 2 1 2 1 1 3 1 2 1 2
20 P 2 1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 1 1 3 1 2 1
21 P 1 1 2 1 2 2 1 1 2 2 2 2 1 1 2 1 2 2 1 3 1 1
22 2 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 3 3
23 P 1 2 2 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 3 3
24 P 2 1 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 1 2 3 1 1
25 2 2 1 1 2 1 1 2 1 2 2 1 1 1 1 2 1 2 1 3 2 3
26 1 2 2 1 1 2 2 2 1 2 1 1 1 1 1 1 2 1 2 3 2 3
27 P 2 1 2 2 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 2 3 2
28 1 1 2 1 2 2 1 1 2 2 2 1 1 1 1 2 1 3 2 1 2 2
28′ 1 1 2 1 2 2 1 1 2 2 2 1 1 1 1 2 1 3 2 1 2 2
29 P 2 2 1 2 1 2 1 1 2 2 1 1 1 1 1 1 2 2 3 2 1 1
30 P 1 2 2 2 2 1 1 2 2 1 1 1 1 1 1 2 1 3 2 2 1 1
31 2 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 2 2 3 1 2 2
32 P 2 2 2 1 1 1 2 1 2 1 2 1 1 2 2 2 2 1 1 2 2 1
33 1 2 1 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1
34 2 1 2 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 1 1 1 2
35 2 2 1 1 2 1 1 2 1 2 2 1 2 1 2 1 2 3 2 1 3 1
36 1 2 2 1 1 2 2 2 1 2 1 2 1 2 1 2 1 2 3 1 3 1
37 2 1 2 2 1 2 1 2 1 1 2 2 1 2 1 1 2 3 2 3 1 3
38 1 1 2 1 2 2 1 1 2 2 2 1 2 2 1 1 1 1 3 2 3 3
39 2 2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 1 3 1 3 2 2
39′ 2 2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 1 3 1 3 2 2
40 1 2 2 2 2 1 1 2 2 1 1 2 1 1 2 1 1 1 3 3 2 2

Table 5
Results: purity of the salt in %.

SSD Y D-opt Y D-opt Y

1 97.59 13 99.28 28 101.43
2 86.68 14 100.13 28′ 101.15
3 98.39 15 101.13 29 79.09
4 100.26 16 90.82 30 96.83
5 90.19 17 99.15 31 100.49
6 99.01 18 98.71 32 98.8
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3. Results and discussion

One response Ywas studied by the designs: the purity of the obtained
PBA salt, measured by HPLC analysis. The results are presented in Table 5.
Y is expressed in %. However, some of the results appear to be above 100%
in purity, which is impossible. This can be explained by the calculation of
the response: measurements were made thanks to an external standard
that was considered as a hundred % pure. The obtained results show
that several experiments allowed us to synthesize a better quality salt.

3.1. Supersaturated design

Data processing was carried out in two steps: first a step-wise re-
gression was performed, and then all subset regressions were used
for a number of factors from two to six. Four criteria were studied
in order to determine the number of necessary variables in the
Table 4
Quality criteria from Yamada [24].

Sum (χ²) Ds Max Ave χ²-eff

C (12×17) 88 1.55 1.33 0.65 0.63
(C,D) 186 2.45 6 2.4 0.65
Full 316 2.45 6 0.74
model: R² (correlation coefficient), AIC (Akaike Information Criterion
[33]), BIC (Bayesian Information Criterion [34]) and s² (residual vari-
ance). R² should be maximised, and the other criteria minimised. AIC
and BIC are useful tools for the model selection: they allow us to eval-
uate the model adequacy and grant the comparison between several
7 80.33 19 99.96 33 87.22
8 94.3 20 92.74 34 100.34
9 94.65 21 82.98 35 103.67
10 95.66 22 102.39 36 104.09
11 100.8 23 79.74 37 98.86
11′ 102.33 24 95.62 38 99.53
12 97.73 25 98.27 39 102.55

26 101.45 39′ 98.38
27 81.72 40 101.49
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Fig. 3. Evolution of the criteria in function of the number of variables.

Fig. 5. Residues repartition.

Table 6
Variance analysis on the response Y.

Variation
source

Square sum Freedom degrees Mean square Report Signif

Regression 1.73E+3 27 64.19 3.62 0.586 **
Residues 2.66E+2 15 17.74
Validity 2.56E+2 12 21.35 6.47 7.5
Error 9.90 3 3.30
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experimental models. They are helpful in the choice of the right num-
ber of parameters for the model. The following equations (Eqs. (8)
and (9)) show how both criteria are calculated, in which k is the num-
ber of the estimated parameters of the model, n the number of obser-
vations and L the maximum probability density for the estimated
model:

AIC ¼ −2ln Lð Þ þ 2k ð8Þ

BIC ¼ −2ln Lð Þ þ kln nð Þ ð9Þ

Fig. 3 gives the progress of these criteria based on the number of
variables regressed. In the case of the R² criterion, the introduction of
the first variable leads to an important raise. The introduction of a
second variable leads to a weaker increase, and the next ones do
not induce any significant raise of the criterion R². Thus, this criterion
indicates that a two-variable model seems acceptable in this analy-
sis. The other criteria shown on Fig. 3 confirm that a two-variable
model is acceptable, as a rupture can be seen in the curves after the
second variable is added.

The mapping of the variables is then studied [30] (Fig. 4). In this
figure, the selected variables appear in black for each proposed
model, from the best model (in terms of criteria R² only) in the first
line above, that we can call the first model, to the eight model (last
line of the figure).

Two variables appear regularly selected: b18B and b1A, which
means that the parameter X18 is predominant, followed by the factor
X1. These two parameters are confirmed by the stepwise regression.
These figures indicate that two variables seem to be a reasonable
choice to explain the variation of the response. Thus, two factors are
detected as influent on the process, U18 (dithiopyridine supplier)
and U1 (dithiopyridine quantity).
Fig. 4. Mapping with 3 variables.
3.2. D-optimal matrix

Data analysis of the D-optimal matrix is conventional: first the
variance is studied, then the residues and the distribution of the
data, and finally the factor effect plot is analysed.

The variance study is shown in the ANOVA table (Table 6). The
ANOVA allows us to determine if the response is well explained by
the postulated model. In the present case, there is a 0.6% probability
that the null hypothesis is refused. We conclude then that the
Total 2.00E+3 42

Fig. 6. Daniel's plot.
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Fig. 7. Factor effect plot of the D-optimal design.
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response is well-explained by the postulated model. In the same
manner, the analysis based on a Fisher test indicates that there is
no lack of fit detected. Then, there is nothing in the variance analysis
that permits us to reject the postulated model.

Next, the residues are low and homoscedastic (Fig. 5), and they
follow a normal plot [35] (Fig. 6).

Finally, the analysis of the factor effect plot (Fig. 7) indicates that
the most influent factor is U18 (dithiopyridine supplier), and two
other parameters have little influence (U4, temperature 1 and U7,
catalyst quantity). The significance of another factor, U21 (dicyclo-
hexylamine supplier), is debatable.

To sum up, four factors are detected as actually active: U18 in a
large way, and U4, U7 and U21 to a lesser extent.

4. Conclusion

The results of this study are quite encouraging. Firstly, the super-
saturated design permitted to confirm the robustness of the process
protocol studied in only 12 experiments.

Secondly, the same most active parameter (U18, dithiopyridine
supplier) was found with both matrices, mixed-level supersaturat-
ed and D-Optimal. This reagent origin effect cannot be explained,
as the analyses certificates provided by all three suppliers indicate
that the products are more than 99.5% pure. In the analysis of the
40-run matrix, a few less influent factors were found, but this differ-
ence can be explained by the loss of information due to the super-
saturated design, entailing the reduction of experiments.
Moreover, in the present study, the D-optimal analysis could indi-
cate that the sparsity effect is not ideal, as four active factors are
detected, which is more than the 10% limit required. As supersatu-
rated designs are used as preliminary studies, and permit to identify
only the most important factors, further analyses of the process
with conventional matrices should be considered. Regardless, the
use of this kind of matrices permit a significant gain of time, as in
this study, a 12-run supersaturated design allowed us to carry out
the same robustness study as a 40-run conventional design.
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