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a  b  s  t  r  a  c  t

Optimal  fractions  of resolution  V  design  matrices  proposed  by Rechtschaffner  in  1967  are  developed  and
applied  as  supersaturated  designs  in  screening  experiments.  Rechtschaffner  matrices  allow  evaluation
of all  main  factors  and  two-factor  interactions,  which  in  many  real-world  studies  are  of  practical  signif-
icance.  However,  the  number  of  experimental  runs  increases  rapidly  with  the  number  of  factors  in  the
matrices,  which  are  therefore  impractical  for more  than  5–6  factors.  On  the  contrary,  saturated  fractions
based  on  Hadamard  matrices,  which  are  commonly  applied  in  screening  studies,  cannot  evaluate  the
interaction  effects.  Here,  a  procedure  for selecting  the  optimum  fractions  of  Rechtschaffner  matrices  is
presented  and  provides  supersaturated  matrices  that  are  well  adapted  to a variety  of  problems,  thus
allowing  the  development  of  screening  studies  with  a  relatively  small  number  of experiments.  The  pro-
cedures  developed  to  derive  the  size-reduced  matrices  and  to  evaluate  the active  factors  are  discussed

and compared  in  terms  of  efficiency  and  reliability,  by  means  of  simulation  studies  and  application  to  a
real problem.  These  fractions  are  the  first  supersaturated  design  matrices  capable  of  estimating  interac-
tion effects.  Additionally,  one  important  advantage  of  these  supersaturated  matrices  is  that  they  enable
development  of  follow-up  procedures  in  cases  of  inconclusive  results,  by  enlarging  the  matrix  and  even-
tually  resolving  the full Rechtschaffner  matrix  of  departure  when  it is  necessary  to evaluate  the active
factors  and  their  interactions.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Screening experiments are applied when the objective is to
dentify a few significant factors from among a large number of
otentially active factors (the so-called sparsity effect [1]) using
s few runs as possible. In general, the hypothesis is that the
ain active factors can be identified by screening experiments

nd that further experiments will evaluate the exact influence of
hese factors as well as their possible interactions. Thus, saturated
xperiments (resolution III designs requiring only as many runs as
here are parameters in the model to be estimated) that focus on

ain effects are frequently applied for screening purposes. In sat-
rated experiments, we assume an additive model for the process
nder study. In other words, no interaction factors are significant.

oreover, since saturated experiments do not provide an estimate

f experimental error, we assume that a prior estimate of this

∗ Corresponding author.
E-mail address: rafael.cela@usc.es (R. Cela).

003-2670/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2012.01.060
experimental error is available. Otherwise, no statistical decisions
can be made.

Resolution III experiments may  be regular or non-regular. In
regular resolution III experiments, two-factor interaction effects
are orthogonal or fully confounded with main effects, so that the
only way  of estimating the interaction effects is to increase the
resolution by augmenting the design matrix. On the other hand,
non-regular resolution III experiments have complex confounding
patterns with two-factor interaction effects partially confounded
by many main effects. Thus, hidden projective properties [2,3] of
these non-regular designs may  be used to estimate some two-factor
interactions, even though the design does not have the appropri-
ate resolution. Sparsity effects must therefore be admitted, and the
effects of some heredity rules [4,5] also need to be applied. These
heredity rules imply that interaction effects can only be significant
if at least one of the main factors involved is active (weak heredity)
or when both factors involved are active (strong heredity). Appli-

cation of both the sparsity and the heredity rules make it possible
to reduce the number of runs in the experiment to amenable limits
because if only a few main factors are active and only the interac-
tions between these active factors need to be screened, then there

dx.doi.org/10.1016/j.aca.2012.01.060
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:rafael.cela@usc.es
dx.doi.org/10.1016/j.aca.2012.01.060
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ill be far fewer parameters in the model than in the full factorial
odel.
As regards the limit, if we can reasonably assume that the ratio

f active factors to total factors falls below 10–15%, supersaturated
esign matrices may  be used in screening experiments. Supersat-
rated designs are experimental designs in which there are fewer
un (rows) than factors (columns). This means that main factors
re aliased, and therefore cannot be accurately estimated because
he conventional estimates may  be correlated. Thus, the practi-
al application of supersaturated designs is only recommended if
trong sparsity effects are anticipated. It is apparent that no attempt
t evaluating interaction effects can be made in supersaturated
esigns.

Supersaturated designs were initially proposed by Satterth-
aite [6] in 1951, but their development and application only

ecame important in the 1990s [7–10]. In general, much work
as been done regarding the construction of several new types
f supersaturated designs, and much less concerning the practical
esolution of these designs [11] and their application to real-life
roblems. Because in real world situations we  cannot be sure
bout the fulfillment of the conditions required for the applica-
ion of supersaturated designs on starting experimentation, one
mportant aspect is the possibility of follow-up experiments if the
nitial design does not appear to provide conclusive results. Most
f the supersaturated matrices proposed in the last two decades
o not allow this possibility. However, supersaturated matrices
onstructed by branching Plackett-Burman designs [7,9] will allow
ollow-up processes when necessary, so that the effort expended is
lways profitable.

In cases where we suspect the existence of two-factor inter-
ctions, which in real-life problems occur frequently, resolution V
xperiments are required to estimate both the main effects and the
ffects of interactions. In such cases, Rechtschaffner designs [12]
resolution V saturated and balanced matrices), requiring only a
ew experiments, are of interest.

Rechtschaffner [12] proposed eight classes of designs that can
e constructed with three design generators: generator I is either
he treatment combination (1, . . .,  1), in which each factor is at its
ighest level, or (−1, . . .,  −1), in which each factor is at its lowest

evel (one row in the design matrix). Generator II are treatment
ombinations in which one of the n factors is at its highest (lowest
lternatively) level while the others are at their lowest (highest)
evel (n rows in the matrix). Generator III are treatment combi-
ations in which two of the n factors are at their highest (lowest
lternatively) level while the other are at their lowest (highest)
evel (n(n − 1)/2 rows in the matrix). Thus, the total number of runs
s 1 + n + n(n − 1)/2, which equals the number of parameters in the
eneral model:

 = b0 +
n∑

1

bixi +
n−1∑

1

n∑

j=i+1

bijxixj

The statistical properties of Rechtschaffner designs have been
tudied by Qu [13], in comparison with other resolution V designs
nd also by Qu and Wu [14], and applied by several authors in
imulated [15] and real-life problems [16–18].

Although Rechtschaffner matrices require the minimum num-
er of runs in resolution V experiments, the experimental effort

ncreases considerably when a large number of factors is con-
idered. For example, considering only designs at two  levels, the
echtschaffner matrix for 5 factors involves 16 runs, but the matrix
or 9 factors requires 46 runs, and for 20 factors 211 runs are
ecessary. These numbers go beyond the possibilities of real-life
xperimental studies. Thus, we propose here the use of fractions
f Rechtschaffner matrices as supersaturated matrices in screening
a Acta 721 (2012) 44– 54 45

studies where the interest is not only in the main effects but also
the two-factor interactions. The use of a fraction of a resolution V
design has the intrinsic advantage of allowing follow-up processes
when necessary; estimation of main and two-factor effects, with a
drastically reduced experimental effort, is also possible under the
sparsity and heredity principles.

In the following, we describe the procedures used to obtain
optimal fractions of Rechtschaffner matrices (Section 2) and two
proposals for evaluating the effects in the supersaturated matrices
obtained (Section 3), and also test these proposals with simulated
and real-life data (Sections 4 and 5). Finally, some conclusions are
reached about the practical applications of our proposal.

2. Construction of optimal fractions of Rechtschaffner
matrices

In light of the generators used to construct the Rechtschaffner
matrices, it is evident that a simple branching procedure to produce
half or approximately half-fractions cannot be used. Moreover,
using signs to make branching would produce fractions that mainly
correspond to rows produced by generator I and II, or by genera-
tor III. Thus, in theory, these fractions may  perform undesirably
as supersaturated fractions. With the aim of using fractions of
Rechtschaffner matrices in screening experiments to evaluate main
and two-factor effects, a measure of the potential ability of these
fractions to provide the needed information is needed. Here, we
propose the use of the alias matrix calculated from the fractions.

The alias matrix, defined by Box and Wison [19], can be applied
to determine the aliases of main effects with two-factor interac-
tions in saturated designs [20,21]. The alias matrix can be calculated
[22] as:

A = (X ′
1X1)−1(X ′

1X2)

where X1 is an n × n matrix of contrast coefficients for the intercept,
main effects and estimable two-factor interactions and X2 is an n × u
matrix of contrast coefficients for the inestimable two-factor and
higher interactions, considering a model such as

y = X1ˇ1 + X2ˇ2 + ε

where ˇ1 and ˇ2 are respectively the corresponding n × 1 and
u × 1 vectors of regression coefficients of estimable and inestimable
effects. Thus, it is assumed that the regression solution of the main
effects model from the design matrix is biased by the existence of
inestimable effects:

y = X1ˇ1 + e

�
ˇ1 = (X ′

1X1)−1X ′
1y

E(
�
ˇ1) = ˇ1 + (X ′

1X1)−1(X ′
1X2)ˇ2

Thus, according to Lawson [22], the alias matrix shows how
linear combinations of the inestimable two-factor interactions
coefficients bias the regression coefficients for the intercept, the
main effects and the estimable two-factor interactions, if any.
The rows of the alias matrix correspond to the biased regression
coefficients and the columns to the regression coefficients for ines-
timable two-factor interactions. The values in each row are the
multipliers for the linear combination of interaction regression
coefficients that bias each estimable regression coefficient.

The alias matrix has been used by Lawson [22] as an alterna-

tive way  of interpreting the projective properties of non-regular
designs. Instead of considering only the interaction effects derived
from the main factors identified as active (strong heredity rule),
cells in the alias matrix with large values are further considered to
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Fig. 1. Graphical representation of alias matrices of 33 row fractions of the 211//67
6 R. Cela et al. / Analytica C

creen possible active two-factor interactions, finally assessed by
he heredity principle.

Thus cells with large values correspond to interaction effects
hat mainly bias the main factor estimations. Following this reason-
ng, at the time of selecting a fraction of a Rechtschaffner matrix, one

ust seek fractions with the most uniform alias matrix with small
alues. This means that bias in the estimation of main effects due
o two-factor interactions will be approximately equal to all main
actors. Of course, smaller values in the alias matrix will lead to less
ias in the main effects estimated. Obviously this second condition
ill drive the search for full Rechtschaffner matrices because they

re of resolution V. The fewer the number of rows in the matrix
raction, the larger the values in the alias matrix will be. After fix-
ng a particular number of rows, a search procedure is required to
elect the matrix with the most uniformly distributed alias matrix.
n this sense we can call these matrices optimal.

Development of the required procedure was aided by an evo-
utionary algorithm implemented in house [23] using Delphi 2007
or windows programming language. In this application, a popu-
ation of chromosomes whose elements are the row positions in
he original full Rechtschaffner matrix considered, are allowed to
volve under the effects of the usual genetic operators [24] (k = 2
ournament selection, simple crossover recombination with p = 0.7,
niform mutation (p = 0.01) and elitism). The fitness function is a

inear combination of measures of alias matrix uniformity. In this
ase, a combination of the absolute average value, the range and
he variance of cell values in the alias matrix corresponding to each
ndividual was used as a fitness function to drive the evolutionary
rocess.

The alias matrices corresponding to (a) a random fraction and
b) the optimal fraction obtained using the above described proce-
ure for a 33 rows fraction of the 211//67 Rechtschaffner matrix are
raphically compared in Fig. 1. As expected, the overall values in (b)
re lower than in (a), and positive and negative values are quite uni-
orm, unlike the randomly constructed fraction. Moreover, in (b) it
an be seen that higher values for the alias matrix cells correspond
o the partial aliasing with the intercept. In (a) several large val-
es in the alias matrix are also associated with the intercept value,
lthough several equally important values are distributed among
he main effects. Thus, the fitness function developed to optimize
he construction of these fractions favors aliasing the inestimable
wo-factor interactions with the intercept, while managing to avoid
liasing the main effects coefficients.

Several optimal fractions of different Rechtschaffner matrices,
onstructed using the RFRACT application and following the proce-
ure described, have been compiled for practical purposes (Table 1).
ther fractions can easily be constructed using the RFRACT appli-
ation, which is a freeware program that can be obtained from the
uthors on request.

. Evaluating effects in the size-reduced Rechtschaffner
atrices

The accurate evaluation of effects in supersaturated matrices
as not yet been fully resolved. At the beginning of 1990s, for-
ard selection in regression analysis [7,25],  the stepwise regression
rocedure [8],  all subsets regression [11,26] and Bayesian variable
election procedures [27] were proposed with this aim. Forward
nd stepwise regression have been shown to fail rapidly if the
umber of factors is larger than the number of runs, or if there

s excessive collinearity. However, as we will see later, in sequen-

ial approaches based on projective properties, stepwise regression
an perform quite satisfactorily. Although all subsets regression
s one the most accurate procedures for analyzing supersaturated

atrices (because in theory all possible models can be evaluated),
Rechtschaffner matrix: (a) randomly size-reduced matrix, and (b) optimal size-
reduced matrix.

this method has been rejected by several authors because of the
enormous computational costs associated with the combinatorial
nature of evaluating each potential subset.

Here, two  different approaches have been applied to evaluate
effects in the supersaturated matrices obtained when fractions of

Rechtschaffner matrices are constructed. One of the procedures
uses all subsets regression assisted by evolutionary algorithms,
whereas the other combines biased initial regression guesses (e.g.
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Table 1
Some optimal fractions of Rechtschaffner matrices produced by following the proposed evolutionary search procedure.

Rechtschaffner matrix of departure Optimal supersaturated fraction

Factors Runs Runs Rows taken from the matrix of departure

5 16 7 2,4,6,7,8,11,13
8 1,2,4,6,8,11,12,14
9 1,2,6,7,8,11,12,14,16

10 2,4,6,8,9,11,12,13,14,16
11 1,2,4,6,7,8,9,11,13,14,16

6 22 10 3,4,5,6,8,9,10,11,19,22
11 2,3,4,5,6,8,9,10,11,15,20
12 2,3,4,5,6,7,10,11,13,16,19,20

7 29 14 3,4,5,6,7,8,16,18,19,21,22,24,26,28
15 2,3,4,5,6,7,8,9,13,15,17,23,24,25,29
16 2,3,4,5,6,7,8,9,13,15,17,23,24,25,26,29

8 37 18 2,3,4,5,6,7,8,9,11,14,15,18,19,20,23,31,33,37
20 2,3,4,5,6,7,8,9,10,11,12,21,22,24,25,28,31,33,35,36
22 2,3,4,5,6,7,8,9,10,12,16,19,20,21,22,23,25,26,28,34,36,37

9 46 20 2,3,4,5,6,7,8,9,10,13,14,21,25,27,28,35,36,41,42,45
23 2,3,4,5,6,7,8,9,10,13,14,18,22,24,25,27,28,29,33,34,39,44,45
26 2,3,4,5,6,7,8,9,10,11,15,17,18,20,21,23,26,28,29,30,35,37,38,39,45,46

10 56 22 2,3,4,5,6,7,8,9,10,11,19,26,27,34,40,43,44,49,52,53,54,56
28 2,3,4,5,6,7,8,9,10,11,12,13,19,20,24,25,26,29,30,36,38,39,42,45,48,52,55,56
32 1,2,3,4,5,6,7,8,9,10,11,12,13,14,18,20,23,24,25,29,30,32,33,37,40,42,46,48,52,53,54,56

11 67 24 2,3,4,5,6,7,8,10,11,12,18,20,21,25,26,27,35,39,41,44,45,46,52,56
33 2,3,4,5,6,7,8,9,10,11,12,14,16,18,20,25,28,30,31,32,33,35,41,44,46,49,53,54,57,60,63,65,66
40  1,2,3,4,5,6,7,8,9,10,11,12,14,16,17,18,21,22,23,25,26,27,28,32,38,39,40,41,43,46,50,51,54,55,58,59,61,63,65,66

12 79 26 2,3,4,5,6,7,8,9,10,11,12,13,23,24,29,34,38,45,46,52,60,63,69,72,75,78
36 2,3,4,5,6,7,8,9,10,11,12,13,16,17,21,22,28,29,30,33,39,41,42,43,48,50,51,52,53,56,59,61,65,70,78,79
40  2,3,4,5,6,7,8,9,10,11,12,13,16,17,18,20,22,26,27,28,29,33,37,38,39,40,42,47,50,51,53,55,62,65,67,73,74,75,76,78

14  106 30 2,3,4,5,6,7,8,9,10,11,12,13,14,15,19,20,28,32,37,40,51,53,70,71,72,74,75,96,105,106
40 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,25,28,30,35,37,42,43,48,51,56,58,66,68,70,72,73,77,81,83,84,87,90,94,99,105
53 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,20,21,22,24,28,29,32,33,36,37,41,45,49,50,52,53,54,56,58,62,66,68,69,78,79,80,84,88,89,92,93,94,98,99,102,103,105,106

16 137 36 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,23,28,32,38,50,67,70,81,82,84,93,94,98,106,107,118,123,130,136,137
48 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,21,26,27,31,33,34,36,44,49,52,55,62,63,65,74,77,79,88,90,93,96,101,106,115,116,118,121,124,129,134,137
64 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,24,27,28,30,32,35,38,39,40,41,45,48,49,50,55,56,60,63,66,67,68,70,76,79,80,83,84,85,86,89,94,96,100,101,107,

108,111,112,116,118,119,120,125,131,134,135,137
20 211 48 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,32,40,46,47,55,66,71,72,76,77,82,83,96,100,116,130,132,139,145,147,161,166,178,181,187,189,204,209

72 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,24,32,33,37,38,41,42,49,50,58,59,60,66,81,90,92,94,103,105,106,107,109,116,121,124,129,132,134,142,
144,147,149,152,159,160,165,166,168,176,177,181,185,193,194,196,197,198,199,201,202,209
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ig. 2. Graphical tools in the evaluation of effects using all subsets regressions driven
y  evolutionary algorithms (island plots).

sing stepwise regression or ridge regression) with projective prop-
rties of the design matrix and a final reduced all-subsets regression
rocess to identify the active effects in the system accurately.

.1. Procedure A: all subsets regression driven by genetic
lgorithms

Sudjianto et al. [26,28] were the first authors to propose the use
f genetic algorithms to analyze supersaturated design matrices.
he basic idea is to represent each subset of variables by a binary
tring, so that for the full additive model involving k variables:

 = ˇ0 + ˇ1x1 + · · · + ˇkxk + ε
ould be represented by a string of k + 1 ones and the void model
y a string of 1 + k zeros. Thus, each subset will be represented
y a unique string. These strings constitute the chromosomes of a
 Acta 721 (2012) 44– 54

population of n individuals that would evolve to an optimal point,
which will be the best subset of variables for a given problem. To
perform the evolutionary process, each individual is assigned a fit-
ness value (a convenient measure of regression quality), which will
be used by the selection operator to choose, in any given genera-
tion, pairs of individuals that perform better than the population
average, to survive, be mated and produce by means of the recom-
bination operator new individuals who  by exchange of bits in the
parent structure will exploit the best solutions to the problem. In
addition, from time to time, small modifications in the chromo-
somes are introduced by the mutation operator, thus providing
a means of exploring all the search space in the pursuit for the
optimal solution [29].

In 2002, Cela [30] developed freeware software called SUPER-
SAT, which is based on the same ideas, using an island-type
evolutionary algorithm without transfer of individuals coded in real
numbers. Each island in the algorithm corresponds to a fixed com-
plexity subset so that the final output provides the optimal subsets
for the different subset sizes [31].

Although a population is maintained on each island, only the
best individual is shown at any time, in the so-called island plots
shown in Fig. 2. An island plot is a simple representation of the fit-
ness function (vertical scale) of the best individual on each island
(horizontal scale, meaning the number of variables in each subset).
The island plot sometimes shows a clear break in the fitness values
for a certain number of variables in the subset (Fig. 2(a)). This break
should be an indication that the optimum subset of this particular
size represents the optimal solution for the regression problem.
Decreases in fitness values as more and more variables enter the
regression subset indicate that noise is now being regressed, so
that the increase in complexity of the model does not justify the
regression quality. However, an island plot, such as that shown in
Fig. 2(b) is sometimes obtained where no clear break appears. This
indicates that the number of active factors in the system under
study is large (the sparsity principle is violated) or that the noise in
the response vector is too high to derive a clear optimal subset. Even
in such cases, some important information can be gained by study-
ing so-called screen maps (Fig. 3), which graphically compare the
optimum models in each island once the evolutionary process has
ended. In screen maps, the patterns of factors may suggest which
factors are actually active. Provided the problem under study is well
suited to the application of supersaturated designs, the hypothe-
sis in SUPERSAT is that active factors will tend to be retained in
the optimum subsets in each island, so that a pattern such as that
shown in Fig. 3(a) should appear. Here we see that some factors
are almost systematically included in most optimal subsets. More-
over, the sequence of factors entering the optimal models when
the model complexity grows, and the estimated values of coeffi-
cients for factors (represented by colors according the scale), may
also give an indication the activity and significance of factors if
previous estimate of experimental error is available. A contrast-
ing situation in which we  see that the optimal subset for each
island mainly involved different factors and no permanent pattern
appears (Fig. 3(b)). This suggests that the number of active factors
is large or, more frequently, that the response vector is unable to
show the factor activity clearly. These graphical tools are used to
evaluate the number of active factors and to give an initial estima-
tion of the corresponding coefficients for the optimal regression
model finally adopted.

SUPERSAT can be used to evaluate main effects and also to eval-
uate regression models including main and two-factor effects (or
even a full quadratic model), so that it can be applied directly to

evaluate fractions of Rechtschaffner matrices to analyze the model
including interactions, or can be applied in two stages by study-
ing a main effects model and then a model of main and two-factor
interactions.
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Fig. 3. Graphical tools in the evaluation of effects using all su

Evolutionary-driven all subset regression procedures overcome
he main drawback of conventional all subsets regression and the

atrix evaluation can be carried out within seconds in a modern
ersonal computer. Another frequent criticism of the use of these
on-conventional regression procedures is the need for specific
oftware rather than procedures commonly available in standard
tatistical packages. Since SUPERSAT is freeware, this second draw-
ack is avoided.

.2. Procedure B: iterative strategy based on stepwise and
ll-subsets conventional regression procedures and projective
pproach

There are different problems associated with conventional
tepwise and all-subsets regression procedures when solving
upersaturated design matrices. As shown in some studies, step-
ise regression often fails to detect active factors, but tends to

elect many inactive factors [11,25].  However, conventional all-
ubsets regression rapidly becomes unfeasible when the number of
actors increases to even moderate numbers, and does not identify

odel sizes automatically. More elaborate strategies for identify-
ng active factors have recently been developed [31], including the
o-called iterative strategy [32], which is highly efficient when the
umber of factors is large. In this strategy, the variables (princi-
al + two-factor interaction effects) are split into several sets (F1, FA,
B, . . .,  FZ). Variables in set F1 are obtained by calculation of biased
oefficients for the original variables (e.g. by stepwise regression),

nd selection of the apparently most important variables by sorting
he coefficients in descending order; k1 variables are then placed in
he F1 set and the remaining ones are distributed among the other
ets (FA, . . .,  FZ) by placing k2 variables in each additional sets (thus,
egressions driven by evolutionary algorithms (screen maps).

the number of sets depends on the original number of variables
as well as on the k1 and k2 values adopted). The size of K1 may
be defined by computation using Lenth’s pseudoscale error [33]
for supersaturated matrices with an orthogonal base [7,34,35], or
the variables corresponding to the largest f1 = |2k/3| absolute ˇt for
matrices without an orthogonal base (e.g. Lin matrices [9]), where
k is the number of variables in the matrix; and k2 = k1 − NVmax,
where NVmax is the anticipated maximum number of active vari-
ables in the study, which should be smaller than the total number
of variables considered when supersaturated matrices are used, as
previously discussed. For example, in the 211 Rechstchaffner matrix
considered in previous discussions, the F1 set is first constructed
with the 12 highest coefficient estimates obtained by forward
stepwise regression. If we accept that in this study, 10 is a rea-
sonable maximum number of significant variables, the additional
sets will be formed by placing groups of 10 variables in descend-
ing order of coefficients. The all-subsets regression with k′ = 10 is
then performed in F1 and the resultant factors are added to set
FA. Again, all-subsets regression with k′ = 10 is carried out on the
FA set, taking the best solutions in each case, as before. This pro-
cedure is repeated with FB, FC and so on until FZ. Note that the
final group of variables is, as expected, very similar to the F1 group.
Then we carried out in this group stepwise regression; calculation
of criteria such as BIC (Bayesian Information Criterion) [36], AIC
(Akaike’s Information Criterion) [37] and mAIC [38] and all-subsets
regression.

The final stage consists in projecting the variables detected as

significant by the stepwise and all-subsets regression subject to
acceptable quality criteria (variance inflation factor <2). The result-
ing matrix leads to classical treatment (multi-linear regression),
and allows quantification of principal effects bi and two-factor
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nteraction effects bij. In most cases, this procedure enables reliable
dentification of the significant variables.

. Results and discussion

.1. Comparison between optimal size-reduced matrix and
andomly size-reduced matrices

A series of simulations were initially carried out to confirm the
asic hypothesis regarding the use of size-reduced Rechstchaffner
atrices in factor screening studies. The first simulations were car-

ied out with three random 20 row size-reduced matrices departing
rom the 8 factor Rechstchaffner matrix. These matrices included
he following rows in the original 28//37 design:

Matrix Rows taken at random from the Rechstchaffner matrix

RS1 2,3,6,10,11,12,15,16,17,21,23,24,25,29,30,31,33,34,35,37
RS2 1,2,4,5,7,9,12,15,16,18,20,22,26,27,29,30,32,33,34,36
RS3 4,6,7,8,11,15,16,17,20,21,22,23,24,28,29,30,31,34,35,37

Simulations were carried out with these matrices, and with two
ifferent sets of six randomly chosen active factors, as shown in
able 2. Two different patterns were developed with each set of
ctive factors. In the first pattern, all effects except those of the
ctive factors were assigned a zero value, whereas in the second

attern, small random values ranging from 0 to 1.0 were assigned
o the remaining effects by using the Box–Muller algorithm [39].
urthermore, four simulations were developed using each pattern,
y adding increasing levels of noise (standard deviation values from

Fig. 4. (a) Stepwise regression to 10 variables
 Acta 721 (2012) 44– 54

1 to 4 in the Box–Muller formulae). A total of 48 simulations were
produced in this way.

It should be noted that the applied coefficient patterns are
clearly higher than the recommended limits in the application of
supersaturated matrices because, in both cases, 6 active effects
were included in matrices with only 20 rows. Thus, these series
of simulations were considered challenging enough to derive the
real possibility of using size-reduced Rechtschaffner matrices as
saturated matrices in screening studies involving main effects and
two-factor interactions.

The results of these simulations are summarized in Table 3. Runs
were evaluated by the previously described resolution procedures
(direct evolutionary driven all-subsets regression (procedure A)
and the combination of stepwise and all-subsets regression with
projective approach (procedure B)).

For example, the results obtained for the matrix RS1, response
“Pattern 1A” (noise level 1) are reported for the procedure B. Step-
wise regression (Fig. 4a), calculation of criteria such as BIC (Bayesian
Information Criterion) [36], AIC (Akaike’s Information Criterion)
[37] and mAIC [38] (Fig. 4b), confirm that the number of signifi-
cant variables is probably six. All-subsets regression (Fig. 5), with
k′ values ranging from 2 to 10 (or less) variables clearly shows that
coefficients b3, b5, b8, b35, b38 and b58 are significant. For accurate
identification of the values of the coefficients, these variables are
projected. The resulting matrix (VIFmax = 1.48) leads to the estima-

tions of the model coefficients bi and bij using multilinear regression
(Fig. 6).

The results shown in Table 3 are expressed as the percentage
success in the identification of the real active factors. Values in

 and (b) graphs of s2, AIC, BIC and mAIC.
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Fig. 5. All subset regressions for f = 2–8 variables. The first column in the table shows the number f of selected variables in each model. The second column shows the
mapping of the selected variables where the presence of the variables is marked with a dark square. The third column shows the changes in s2 for a fixed number of variables,
corresponding to different models, numbered 1–8, with increasing s2.
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Fig. 5. (Cont

Table 2
Patterns of effects in simulations.

Effect Pattern 1A Pattern 2A Pattern 1B Pattern 2B

b0 60.00 60.00 60.00 60.00
b1 0.00 0.00 −0.11 −0.11
b2 0.00 −4.00 1.22 −4.00
b3 6.00 7.00 6.00 7.00
b4 0.00 0.00 −0.27 −0.27
b5 7.00 0.00 7.00 0.09
b6 0.00 −6.00 −1.28 −6.00
b7 0.00 0.00 −0.01 −0.01
b8 −5.00 0.00 −5.00 0.94
b12 0.00 0.00 −0.32 −0.32
b13 0.00 0.00 0.73 0.73
b14 0.00 0.00 −0.65 −0.65
b15 0.00 0.00 −1.34 −1.34
b16 0.00 0.00 0.84 0.84
b17 0.00 0.00 0.04 0.04
b18 0.00 0.00 0.91 0.91
b23 0.00 6.00 −0.33 6.00
b24 0.00 0.00 −0.14 −0.14
b25 0.00 0.00 0.71 0.71
b26 0.00 5.00 −0.90 5.00
b27 0.00 0.00 1.31 1.31
b28 0.00 0.00 0.60 0.60
b34 0.00 0.00 −0.18 −0.18
b35 −5.00 0.00 −5.00 0.58
b36 0.00 −6.00 0.64 −6.00
b37 0.00 0.00 0.01 0.01
b38 −4.00 0.00 −4.00 0.87
b45 0.00 0.00 0.64 0.64
b46 0.00 0.00 0.66 0.66
b47 0.00 0.00 −0.32 −0.32
b48 0.00 0.00 −0.23 −0.23
b56 0.00 0.00 −1.18 −1.18
b57 0.00 0.00 −0.46 −0.46
b58 7.00 0.00 7.00 −0.02
b67 0.00 0.00 −0.52 −0.52

p
t
u
a

hypothesis can be confirmed with randomly size-reduced matrices,
although it was  also apparent that the different matrices perform
differently when tested against the same simulation runs, so that
b68 0.00 0.00 0.27 0.27
b78 0.00 0.00 −1.11 −1.11

arenthesis indicate false positive results that eventually appear in

he process. The results corresponding to these same simulations
sing the optimal 20 rows size-reduced 28//37 matrix (see Table 1)
re also included in Table 3 for comparison.
inued )

In  general the results indicate quite good performance, even
for randomly size-reduced matrices. Similar results were obtained
for matrices RS1, RS2 and RS3, although matrix RS3 (fitness
value = 1.2782) appeared slightly better than matrices RS1 (fit-
ness = 1.4677) and RS2 (fitness = 1.3182). When the noise levels
applied in simulation were not too high, the success rate was equal
to or close to 100%, with a limited number of false positive results.
As expected, performance decreased when noise increased, and
when simulation pattern B was applied, which can be explained
by smaller differences between the coefficients for active and non-
active factors than those corresponding to pattern A (non-active
factors have zero effect). Both resolution procedures were also able
to identify the active factors (both main effects and interactions)
in all simulation sets, with procedure B showing excellent perfor-
mance.

These results encouraged us to develop a strategy to search
for optimal size-reduced matrices. It was apparent that the basic
Fig. 6. Effects plot for the response “Pattern 1A” in the matrix RS1 (Noise level 1).
The importance (coefficient values) of each variable is proportional to the length of
the bar. The signification limits are drawn as vertical continuous line.
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Table 3
Results of the preliminary simulation study, with fractions of 20 rows obtained from the 28//37 Rechstchaffner matrix. Comparison with results produced by the optimal 20
rows  fraction matrix.

Coefficients patterna Resolution procedureb Noise level (SD) Percentage of success in active factors recognition (number of false
positive results)

Matrix

RS1 RS2 RS3 Optimal

1A A 1 100 50(2) 100 100
2 100 100 100 100
3 83 100 100 100
4 83  100(1) 100 100

CB  1 100 100 100 100
2  100 100 100 100
3  100 100 100 100
4 100 100 100 100

1B A 1 66 100(2) 83 100(1)
2 83  100(2) 83(1) 100(2)
3  66 100(2) 83(1) 100
4  33(3) 50(3) 66(1) 100(1)

CB 1 100 100 100 100
2  100 100 100 100
3  100 100 100 100
4  100 83(1) 100 100

2A  A 1 66 (3) 66 100 100
2 100 (2) 83(1) 100 100
3  66 83(1) 100 100
4 100 83(1) 83(1) 100(1)

CB  1 100 100 100 100
2  100 100 100 100
3  100 100 100 100
4  100 100 100 100

2B A 1  50(1) 83 83 100
2  50 83(1) 83(1) 100(2)
3 83(1) 83(2) 83 100(2)
4  50(1) 83 83 100(1)

CB  1 100 100 100 100
2  100 100 100 100
3  100 100 100 100
4 100 100 100 100

 subse

a
s

w
s
c
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w
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T
A

a See Table 2.
b A: direct evolutionary driven all subsets regression; CB: combined stepwise-all

n optimization procedure was needed in building size-reduced
upersaturated matrices.

Once the optimal matrices were available, a comparative study
as carried out with these early experiments. The results corre-

ponding to the optimal size-reduced matrix (Table 3, last column)
learly demonstrated the importance of the matrix chosen. In all
ases, all active factors were accurately identified and there were
ery few false positive results, especially when using procedure B,
hich appears more robust in this sense. Furthermore, application
f the heredity principle revealed that most of these false positive
esults can be disregarded [4,5]. Again, it is clear that the two  res-
lution procedures allow accurate identification and estimation of
ctive effects, while drastically reducing the work involved because

able 4
pplication of several fractions of the 25//16 Rechtschaffner matrix to data published by 

Resolution procedure Number of rows in the matrixa Activ

Reference [17] results 16 F1

Evolutionary driven
all-subsets regression
(A)

7 

8 

9
10 F1

11 F1

Combination of
stepwise and
all-subsets regression
helped by projective
properties (B)

7 

8 F1

9
10
11 

a Using optimal fraction matrices defined in Table 1.
ts regression plus projective properties procedure.

the number of rows in the matrix was reduced by almost one
half.

4.2. Testing against real world data

Once efficient procedures to build and solve the size-reduced
Rechtschaffner matrices were established, a second test was con-
ducted with recently published real world data. Nielloud et al.
[17] described the optimization of operational variables in the

formation of stable oil-in-water submicron emulsions used as
vehicles for the drug delivery in different dermatological phar-
maceutical routes. The authors applied a 25//16 Rechtschaffner
matrix to study the influence of the following five factors: F1 = oil

Niellou and al. [17].

e factors identified False positive results

F3 F5 F35

F3 F24

F3 F35 F13, F24

F3 F35 F13, F15

F3 F5 F35

F3 F5 F35

F3

F3 F5

F3 F24

F3 F5

F3 F5 F23, F25
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ype; F2 = mode of formulation; F3 = % surfactant + co-surfactant;
4 = ratio co-surfactant and F5 = % oil, and their 10 two-factor inter-
ction effects. Two responses were measured: particle size after 7
ays of formation and visual evaluation after 50 days of formation,
lthough the second response was imprecise and was therefore
f little help. The experiment was not replicated, so the authors
esorted to Bayesian approaches [1],  to detect the active factors.
he final conclusions were that factors F1, F3 and F5 as well as the
nteraction F35 were active in the studied process.

Fortunately, this paper included all response data, which
llowed us to use these data to check the performance of size-
educed 25//16 matrices. The results of different size-reduced
atrices are summarized (Table 4). Optimal 25//16 size-reduced
atrices with 7–11 rows were tested (see Table 1). The results

emonstrate the need to use a sufficient number of rows for accu-
ate regression when using the procedure A whereas procedure B
ppears less sensitive to this factor. The number of rows needed
epends not only on the number of factors considered, but espe-
ially on the ratio of active factors and the total number of factors
nd the available degrees of freedom. Here, we see that only size-
educed matrices with at least 8–10 rows allow estimation of the
eal active factors without false positive results. Taking into account
he results of the simulations and the experiments with real data, it
s recommended to use size-reduced matrices with at least twice as

any rows as the number of active factors when using the proce-
ure A to evaluate the factors. Thus, in the case of the data reported
y Niellou et al. [17], the matrix must have at least 10 rows. This
eans that the advantages of using size-reduced Rechtschaffner
atrices as supersaturated matrices in screening studies are more

vident with a relatively large number of main factors. For 5 fac-
ors, as in the example, the reduction factor would be only 1.6,
owever for 11 or 12 factors, which is quite frequent in practical
tudies, screening can be completed in 22–24 runs, which means a
eduction factor equal to or greater than three. On the other hand,
rocedure B was  not able to identify all active factors in the Niellou
xample. Of course, as initially discussed, one of the fundamen-
al advantages of this approach is the possibility of carrying out a
ollow-up study to complete the original Rechstchaffner matrix in
ases of doubtful results. This is a distinctive characteristic of the
roposed approach in contrast with many currently used supersat-
rated design matrices.

. Conclusions

For the first time, fractions of resolution V Rechstchaffner
atrixes are proposed as supersaturated designs for screening

tudies. Efficient procedures for building optimal fractions and
or the resolution of these fractions in practical situations have
een found to exhibit very good performance, even in situations

hat largely exceed the limits for the application of supersaturated

atrices. Simulation studies and work with real-world data clearly
emonstrate that this tool opens up new perspectives in experi-
ental studies aimed at detecting important factors in the early

[
[
[
[
[
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stages of process development, and essentially open up new per-
spectives for considering two  factor interactions in these initial
studies, something that has not previously been considered. Thus,
the tool developed may  be advantageous as regards reducing the
experimental effort and providing enhanced, valuable information
from the outset of screening studies.
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