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In the computer experiments setting, if the relationship between the response and the inputs is unknown,
then the purpose is to use designs that spread the points at which the response is observed evenly throughout
the region. These designs are called space-filling designs (SFD) and the most known are Latin Hypercubes
(random, orthogonal, optimized) and low discrepancy sequences. But, simulation codes becoming more and
more complex, high dimensional optimal designs are needed to study a high number of parameters (more
than 20 parameters) and the construction proves difficult. The aim of this study is to explore a construction
method of new space-filling designs for high dimensional spaces. After a short presentation of the criteria
considered to quantify the intrinsic quality of the designs, the generation of these designs using WSP
algorithm is presented. As the first step consists in generating candidate points, the influence of the initial set
of points is investigated in dimension 20 and the final designs are compared with others space-filling designs.
Then, designs are proposed in dimension 20, 30, 40 and 50 and the study of the intrinsic quality of these new
space-filling designs highlights the robustness of this generation method in high dimensional spaces.
. Sergent).
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1. Introduction

In the last decade, the uniform designs of experiments based on
space filling have been more frequently used since experimental
designs methods started being applied in numerical experiments. In
domains such as the oil industry, astronomy, optics, the nuclear
industry, etc., the experiments are expensive and time consuming.
Therefore, phenomena are often studied using numerical simulations,
but the time of calculation can be very long because the models are
increasingly complex, involving a large number of coefficients. This
statement of fact reveals that it would be advantageous to plan and
organize the simulations as done in the domain of experiments and
working in high dimension is now essential. Nevertheless high
dimensional experimental designs are not widely used and their
study looks promising. Uniform space-filling designs (SFD) [1,2],
which spread the computer runs evenly throughout the space studied,
seem to be well adapted to numerical simulations. Generally,
however, the classical methods to build these experimental designs
– such as low discrepancy sequences [3–7], good lattice points [8–11],
Latin Hypercubes [12–16], orthogonal Latin Hypercube [17–19]– have
been described for low dimensional spaces, often fewer than ten
dimensions. This is usually because the algorithms require too long
calculations in high dimensions [20].
In this work, we propose a construction method allowing the
generation of high dimensional designs. First we present the criteria
commonly used to evaluate the intrinsic quality of space-filling
designs, then we present the so called WSP designs based on
Wootton, Sergent, Phan-Tan-Luu's algorithm. Finally, we compare
different space-filling designs in dimensions 20, 30, 40, 50.

2. Construction of space-filling designs

2.1. Measures of uniformity

When the dimension is higher than 2, the uniformity of the space
filling cannot be visually evaluated. It is thus necessary to use
measures in order to know if the distribution is uniform and if the
space of the variables is well filled. Among the various criteria
proposed in the literature, the most used are:

– The Euclidean distance, MinDist[21,22]:

MinDist = min min dist xi; xk
� �

xi∈X xk∈X
k≠i

with, X={x1, x2, ....., xn}⊂ [0,1]d, a set of n points in d dimensions.
A higher value of Mindist should correspond to a more regular

scattering of design points and ensures that a point is never too close
to another point.
ing WSP algorithm for high dimensional spaces,
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- The cover measure, Cov[23]:

Cov =
1
γ

1
n
∑
n

i=1
γi−γð Þ2

� �1=2

with, γi = min
k≠i

dist xi; xk
� �

and γ = 1
n∑

n

i−1
γi:

A low value of Cov corresponds to a distribution close to a regular
grid and ensures that the points fill up the space.

We can plot these values, Mindist and Cov, to distinguish between
distributions of points (random, cluster, ordered, etc.). The empirical
repartition is reported on Fig. 1[24].

In the (MinDist, Cov) plane, the best space-filling designs correspond
to a quasi-periodical distribution which presents the best compromise
between a regular grid (space filling) and a random distribution
(uniformity). Thesedesigns are characterizedbya lowvalue ofCov anda
high value of Mindist, which means that the desirable area is at the
bottom, on the right.

This plot presents a repartition of the different point distributions
similar to the cartography of the Minimum Spanning Tree approach
[24]. This approach is based on a graph constructed from the set of
points of an experimental design, considering two parameters: the
mean and the standard deviation of the edges length of the Minimum
Spaning Tree associated to the studied design.

This leads to conclude that these two criteria – MinDist and Cov –

are sufficient to assess the quality of a space-filling design.

2.2. WSP designs

The construction of WSP designs is based on a selection of well-
distributed points in accordance with the algorithm proposed by
Sergent and al [25–27]. In this algorithm, the points are selected from
a set of candidate points so as to be at a presetminimal distance (dmin)
from every point in the defined multidimendional parameters space,
already included in the design.

2.2.1. Algorithm

Step 1 generate a set of N candidate points
Step 2 calculate the distances (Dij) matrix of the N points
Step 3 choose an initial point O and a distance dmin

Step 4 eliminate the points I such as: DOIbdmin

Step 5 the point O is replaced by the nearest point among the
remaining points
Fig. 1. Empirical repartition of different space-filling designs using MinDist and Cov criteria.
points, and a low value of Cov, corresponding to a regular distribution.
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Step 6 repeat the steps 4 and 5 until there are no more points to
choose.

In this way, the space of the variables will be “full” and covered the
most uniformly possible. Fig. 2 illustrates this algorithm in a 2D space.

It's important to point out that, since the algorithm doesn't add any
point, the initial candidate points is important and must be spread
evenly throughout the studied space.

2.2.2. Impact of the candidate points
As the first step of the WSP algorithm is to generate a set of

candidate points, the question arises on the impact of the choice of
these candidate points as for their number and their distribution. To
answer this question, different types of candidate point distributions
were tested and for some distributions, the number of points in the
departure set was investigated too. This comparisonwas performed in
high dimensional space: D=20, with a number of points arbitrarily
fixed to 400 (20 points by dimension).

– Study of the influence of the candidate points distribution:

We selected eight initial distributions with 3000 candidate points:
stochastic designs such as random distributions, random Latin
Hypercubes, Strauss designs [28] and deterministic designs such as
low discrepancy sequences (Halton [4], Hammersley [5], Faure [3],
Sobol [7]) and maximin Latin Hypercubes [13,29–31,17,32,15,33–35].
For each set of points, the criteria presented in Section 2.1 were
calculated (Table 1). In the case of non deterministic designs, such as
random designs, random LHS and Strauss designs, the distribution of
the points can be slightly different each time we generate a design.
Consequently, for these designs we generated 20 designs and we
considered the mean and the standard deviation (reported in
brackets).

This table shows a large variation of the uniformity criteria. For
example,MinDist varies from 0.194 (Faure low discrepancy sequence)
to 0.690 (Sobol low discrepancy sequence) and Cov varies from 0.085
(Sobol low discrepancy sequence) to 0.830 (Faure low discrepancy
sequence). With regard to these measures, Faure low discrepancy
sequence appears as the worst intrinsic quality design.

From these different sets of points, theWSP selection algorithmwas
performed and a final subset, with around 400 points, was selected.
Table 2 reports the comparison of the intrinsic qualities of the final
designs.
The desirable designs have a high value of MinDist, corresponding to sufficiently distant
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Fig. 2. Illustration of WSP algorithm in 2D space.
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As regards the non deterministic distributions, the 20 final designs
are very similar in terms of uniformity measure since the standard
deviations become very low.

To illustrate the impact of the WSP selection algorithm on the
values of MinDist and Cov, these values are plotted for the initial and
final designs (Fig. 3).

Fig. 3 clearly shows that the eight initial designs (N=3000 points)
present very different intrinsic qualities and, after the selection
algorithm, the eight final designs with around 400 points are
equivalent in terms of the MinDist and Cov criteria (MinDist≈1.3
and Cov≈0.024). We can conclude that the type of the initial
distribution has no impact on the intrinsic quality of the design after
the selection algorithm.

– Study of the influence of the number of candidate points:

As mentioned above, the WSP algorithm is a selection procedure
and doesn't add any point. Consequently, the initial distribution must
uniformly fill the studied space because if some areas are not well
covered, they will be poorly represented in the final design and the
presence of voids could be prejudicial for a subsequent response
surface. In this section, we study the impact of the number of points of
the initial set and, for a same type of initial distribution the number of
candidate points has been studied from 500 to 3000 points. As the
nature of the initial set of points is non influential, only 4 types of
design (Hammersley low discrepancy sequence, Faure low discrep-
ancy sequence, random LHS and random distribution) are considered.
Like in the first study, the dmin of the selection algorithm was
optimized to obtain final designs with around 400 points. The
Table 1
Mindist and Cov criteria of the initial 20 dimensional distributions with 3000 points. For
the non deterministic designs, the mean value and the standard deviation in brackets
are reported.

Design MinDist ↗ Cov ↘

Random distribution 0.585
(0.0648)

0.095
(0.0024)

Random LHS 0.589
(0.0550)

0.096
(0.0016)

Maximin LHS 0.627 0.095
Halton sequence 0.512 0.232
Hammersley sequence 0.512 0.237
Faure sequence 0.194 0.830
Sobol sequence 0.690 0.085
Strauss design 0.597

(0.0485)
0.096
(0.0016)
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uniformity criteria were calculated for each final design, varying the
number of points of the initial design. Results are reported in Table 3
and on Fig. 4. For comparison, the criteria were calculated for each
type of distribution with 400 points without the WSP selection
algorithm: the values are reported in the lines highlighted in gray in
Table 3. It can be noticed that the final designs after WSP selection
algorithm (N≈400 points) present better values of the criteria than
the different considered designs with a same number of points. For
example, MinDist varies from 0.194 for a Faure low discrepancy
sequence with 400 points to 1.290 for a design with 400 points after
the selection algorithm on a Faure low discrepancy sequence
(N=3000) and Cov varies from 0.470 (Faure low discrepancy
sequence, N=400) to 0.020 (WSP, N=400).

The scatter plot of each design versus the number of candidate
points shows large variation in the Cov andMinDist criteria. This leads
to conclude that the number of candidate points may have a great
impact on the quality of the final subset. More precisely, Fig. 4 shows
that the intrinsic quality of the designs improves significantly (the
mindist increases and the cover measure decreases) when the number
of candidate points increases up to a threshold value beyond which
the addition of points becomes useless (no more variation of the
criteria). In this 20 dimensional study, we thus observe that from 2000
candidate points, the addition of supplementary points in the initial
set has no influence on the qualities of the final design with around
400 points. This presence of a horizontal asymptote can be observed
whatever the type of initial distribution.

Moreover, it is interesting to note the variation of the uniformity
measures between a uniform design (Hammersley sequence, N=400,
MinDist=0.512 and Cov=0.280) and a design after selection on an
Table 2
MinDist and Cov criteria of 20 dimensional designs after WSP selection algorithm with
the respective number of points. For the non deterministic designs, the mean value and
the standard deviation in brackets are reported.

Design Number of points MinDist ↗ Cov ↘

Random distribution 401.6
(3.80)

1.319
(0.0031)

0.023
(0.0016)

Random LHS 400.6
(2.87)

1.319
(0.0025)

0.023
(0.001)

Maximin LHS 402 1.320 0.027
Halton sequence 395 1.290 0.027
Hammersley sequence 399 1.292 0.024
Faure sequence 400 1.290 0.020
Sobol sequence 397 1.320 0.022
Strauss design 400.3

(1.68)
1.318
(0.0041)

0.023
(0.0016)
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Fig. 3. Comparison of MinDist and Cov values for eight types of designs. The initial
designs (N=3000 points) present a large variation of the criteria whereas the resulting
designs, after WSP selection algorithm (N=400 points) are equivalent.
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initial distribution at 500 points (from Hammersley sequence,
N=399, MinDist=0.670 and Cov=0.172). The addition of only 100
points to generate a set of candidate points for the selection algorithm
significantly enhances the quality of the final design and thus leads to
a sort of “repairing”.

Finally, by analyzing the intrinsic quality of the final designs, we
can conclude from both studies that the type of the initial distribution
has no importance, even if it is a random distribution, but only if the
number of points of the initial distribution is sufficient. The number of
candidate points depends on the number of required points in the
final design, but we could advise to consider a number of candidate
points equal to at least 5 to 10 times the final set.
Table 3
Mindist and Cov values of the 20 dimensional designs after WSP selection varying the
number of candidate points. For each type of design, the first line, highlighted in gray,
corresponds to the distribution with 400 points without the WSP selection algorithm.

Design Number of points in 
the candidate set

Number of points in 
the final subset

MinDist Cov

400 0.695 0.100
500 401 1.075 0.057

1000 398 1.220 0.031
1500 401 1.255 0.028
2000 398 1.290 0.027
2500 401 1.302 0.024

R
A
N
D
O
M

3000 395 1.322 0.024

400 0.819 0.096
500 402 1.061 0.062

1000 402 1.205 0.041
1500 402 1.254 0.030
2000 403 1.275 0.028
2500 398 1.307 0.023

R
L
H
S

3000 401 1.322 0.023

400 0.512 0.280
500 399 0.670 0.172

1000 401 1.160 0.037
1500 399 1.220 0.028
2000 400 1.250 0.027
2500 399 1.284 0.025

A
H

M
M
E
R
S
L
E
Y

3000 399 1.292 0.024

400 0.194 0.47
500 420 0.975 0.080

1000 407 1.030 0.072
1500 399 1.185 0.027
2000 403 1.243 0.023
2500 401 1.265 0.021

F
A
U
R
E

3000 400 1.290 0.020
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2.3. Comparison of space-filling designs in 20 dimensional space

The previous studies have allowed us to trend towards an
optimized WSP selection algorithm and it seems to us interesting to
compare, in terms of intrinsic quality criteria, space-filling designs
constructed using this algorithm with space-filling designs custom-
arily used in numerical simulation.

The designs selected for the comparison, with 400 points in a 20
dimensional space, are the most common designs used for numerical
experiments. Koehler and Owen (1996) and Franco [28] proposed an
overview of space filling-designs and we have retained:

– Random designs: designs obtained by simple application of a
random function,

– Maximin designs (Covd): optimal designs based on the maximin
distance,

– Dmax designs (dmax): designs which maximize the determinant of
the covariancematrix (Shewry &Wynn (1987), Currin et al. (1988).

– Latin Hypercube designs, with and without optimization (ilhs,
mlhs, rlhs),

– Strauss designs: designs created using a Strauss procedure, which
considers the repulsion between two points to maximize the space
filling (Franco, 2008). Different types of Strauss designs were
considered, with and without optimization.

– Low discrepancy sequences (Faure, Hammersley, Halton, Sobol).

For designs with a stochastic procedure or requiring an optimiza-
tion (random, LHS, maximin, Dmax and Strauss designs), 5 designs
were generated and all the criteria values are reported on Fig. 5.

For comparison, different designs based on WSP selection
algorithmwere constructed from Strauss designs and low discrepancy
sequences (Hammersley, Halton, Faure, Sobol) with 3000 candidate
points. The measures of uniformity –DistMin and Cov – were
calculated for each design and the values are reported on Fig. 5.

This plot underlines the relative position of the different designs
and allows the intrinsic quality of the designs to be compared. We can
conclude that, in high dimension, the low discrepancy sequences
appear as the worst intrinsic quality designs, designs as Covd, Latin
Hypercubes, Dmax seem to be equivalent and group together and,
located at the bottom on the right of the plot, Strauss andWSP designs
appear as the best designs in terms of space-filling designs. Moreover,
it must point out that some algorithms require too long calculations or
are not conceivable: for instance, building a design with WSP
algorithm requires around 2 s compared to a cover design or a Strauss
design (without optimization) that require 220 s or 630 s respectively
(calculation on a HP Z600 workstation).

2.4. Construction in high dimension

The previous studies were performed in 20D and allowed us to
answer the questions that had arisen on the impact of the initial set of
points. From these conclusions, we constructedWSP designs in 30, 40
and 50D and calculated the respective criteria. Actually, as the
algorithm is based on the calculation of the distances between the
points of an initial set, it is easily applied to the study of high
dimensional spaces as 30D, 40D or 50D and even more. We present
designs for these dimensions with 10 points or 20 points per
dimension in the final designs. The candidate points were generated
using Sobol low discrepancy sequences with 5000 to 7000 candidate
points (the final designs are available on simple request to the
authors). The classical criteria –MinDist and Cov–were calculated and
are reported in Table 4 and on Fig. 6. For comparison, we calculated
the criteria for another space-filling design with the same number of
points, a Sobol sequence which seems to be the best low discrepancy
sequence.

As mentioned above, in high dimensional spaces, it's difficult to
build some classical space-filling designs such as Latin Hypercubes.
lling designs using WSP algorithm for high dimensional spaces,
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Only some designs can be generated, such as some low discrepancy
sequences, but Table 4 and Fig. 6 point out that the designs built by the
WSP selection algorithm present better intrinsic quality better than
the classical low discrepancy sequences.
3. Conclusion

The space-filling designs are now recognized as suitable for
computer experiments, but the main obstacle is the high dimension-
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Fig. 5. MinDist and Cov criteria for different types of space-filling designs (N=400
points) in a 20 dimensional space.
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ality of the problem and the algorithms of classical designs require too
long calculations in high dimensions or are not conceivable for some
of them. The new space filling designs based on WSP algorithm
presented in this paper, propose a set of points uniformly spread in
the space selected from a set of candidate points so as to be at a preset
minimal distance from every point in the defined multidimendional
parameters space already included in the design. The analysis of
intrinsic quality criteria of these designs varying the number of points
and the type of the candidate set leads to conclude that the type of the
initial distribution has no importance if the number of points is
sufficient. This conclusion reveals the robustness of the algorithm,
even in high dimensional spaces. The comparison of these designs to
the classical space-filling designs shows a better quality regarding the
Table 4
Mindist and Cov values for two designs: a low discrepancy Sobol sequence and a design
using WSP selection algorithm. The results are presented for two cases, 10 and 20
points per dimension.

Dimension Number of points of the design Design MinDist ↗ Cov ↘

30D 309 WSP 1.76 0.021
300 Sobol 1.20 0.077
605 WSP 1.71 0.022
600 Sobol 1.20 0.069

40D 398 WSP 1.99 0.022
400 Sobol 1.42 0.069
800 WSP 1.94 0.024
800 Sobol 1.29 0.065

50D 501 WSP 2.22 0.019
500 Sobol 1.66 0.059
1000 WSP 2.17 0.022
1000 Sobol 1.57 0.059

lling designs using WSP algorithm for high dimensional spaces,
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uniform repartition and the good fill-up of the space. The advantage of
this algorithm is the ability to build uniform designs in high
dimensional spaces with short calculation time.
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