
Objectif : 
        Depuis de nombreuses années, les plans d'expériences apportent une aide notoire 
aux expérimentateurs et constituent un outil indispensable à toute élaboration de 
stratégies expérimentales.  
         Ce workshop "Plans d'expériences" est une opportunité pour les acteurs des 
domaines publics et privés - sans restriction de disciplines - de se rencontrer et 
d'échanger leurs idées en faisant état de leurs expériences, de leurs préoccupations et/ou 
de leurs recherches. 
 

Positionnement : 
         Ce workshop doit notamment permettre de mieux cerner les problèmes clés 
identifiés dans les grands secteurs de l'industrie concernant l'utilisation de plans 
d'expériences (points forts, difficultés, besoins,…). L'autre objectif de cette manifestation 
est de mettre en regard les recherches en cours et les problèmes scientifiquement 
complexes, dont la résolution apporterait une réelle plus-value scientifique et 
économique.  
        En associant ces deux aspects, ce workshop, neuvième de la série, doit aider à faire 
émerger les orientations de la Recherche future, susciter des collaborations nouvelles et 
des consortiums pertinents avec, pour perspective, la réponse aux défis de demain.  
        Cette année, l’accent sera mis sur le bon et mauvais usage des 
statistiques dans les plans d’expériences et sur les plans de formulation (de la 
conception à l’interprétation). Les sessions seront organisées autour d’une 
problématique, à partir d’exemples concrets, nécessitant la construction de plans 
d’expériences appropriés. Tous les sujets liés à une approche méthodologique basée sur 
la méthode des Plans d‘Expériences peuvent être abordés. Sans être exhaustif, cela inclut 
cette année les thèmes suivants : 
 

�  Analyse de plans d’expériences dans le cas de multi-réponses, 
� Construction et interprétation de plans d’expériences dans un contexte 
industriel, 
�  Cas d'études présentés par des industriels, 
�  Thèmes ouverts. 

 
       A ce titre, nous demandons à tous les participants de présenter des cas 
d’applications, résolus ou non résolus.  
 
       Pour favoriser les échanges et discussions, le nombre de participants sera 
volontairement limité à une trentaine de personnes.  Les présentations du workshop 
seront en français. 

4-6 Octobre 2017 

Hostellerie La Magnaneraie 
VILLENEUVE LÈS AVIGNON 

Statistiques appliquées
aux plans d’expériences

Pierre Lebrun, Pharmalex / Arlenda
pierre.lebrun@arlenda.com
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The Good, the Bad and the Ugly



P-value crisis. A small selection.

4

Nature, 2014 ASA, March 2016

© PharmaLex

''The most important task before us in developing statistical science is to demolish the P-value 
culture, which has taken root to a frightening extent in many areas of both pure and applied science 
and technology.'' Nelder, J. A. 1999. Statistics for the millennium. Statistician 48:257–269 (page 261)
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e.g. p-values for factor screening
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Still, many people use p-value or similar methodologies (e.g. stepwise)
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Average depth of river is 3 feet.

From John Peterson, 2012

The Flaw of Averages:
Why We Underestimate Risk in the Face of Uncertainty
by Dr. Sam Savage

Solution: Prediction of Individual Results 

Or… with my process running at X1=30 and 
X2=10, will it give a product with an Attr1 (e.g. 
(yield) >95% and an Attr2 (e.g. moisture) <5%? 
What are the guarantee this happens ?



Implementation: a Bayesian approach, for we want to predict !

Monte-Carlo Simulations
where the “new observations” are 
drawn from distribution “centered” 
on estimated location and 
dispersion parameters (treated 
wrongly as “true values”). Some 
use CI limits instead.

Predictions
Account for uncertainty in mean 
and in… variability estimates !



Probability being in specifications vs. Tolerance intervals

Use the Predictive distribution to compute the probability to be 
within specifications.

Bayesian statistics allows computing
a probability instead of a Tolerance
Interval only.

What’s the risk ?

Predictive Probability to be in 
specifications

X
X

X
X  

X
X

X
X  

[------------------------------]
Tolerance Interval



Last	but	not	least…

Take into account the uncertainty about future run for defining a region of 
acceptable process (Design Space) for the parameters.
Think risk, instead of mean.

Mean based                        Risk based.

At the edge of the white area, ~50% chance not to achieve claimed quality ! 



Still ! Mean responses dangers ! 

àGenerally, mean responses are used for optimization
✗do not provide any clue about process reliability / capability. You won’t 

observe the mean !!
✗fail to give any information on how the process will perform in the future
✗will certainly give disappointing and unexplained results for the future 

use of the method
✗The same disappointment with DoE ?

 
While the approach in Figure 1d is more limiting, the applicant may prefer it for operational 
simplicity. 
 
This example discusses only two parameters and thus can readily be presented graphically. 
When multiple parameters are involved, the design space can be presented for two 
parameters, in a manner similar to the examples shown above, at different values (e.g., high, 
middle, low) within the range of the third parameter, the fourth parameter, and so on. 
Alternatively, the design space can be explained mathematically through equations describing 
relationships between parameters for successful operation. 
 
Example 2:  Design space determined from the common region of successful operating 
ranges for multiple CQAs. The relations of two CQAs, i.e., tablet friability and dissolution, to 
two process parameters of a granulation operation are shown in Figures 2a and 2b. Parameters 
1 and 2 are factors of a granulation operation that affect the dissolution rate of a tablet (e.g., 
excipient attribute, water amount, granule size). Figure 2c shows the overlap of these regions 
and the maximum ranges of the proposed design space. The applicant can elect to use the 
entire region as the design space, or some subset thereof. 
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Figure 2a: Contour plot of friability as a 
function of Parameters 1 and 2. 

Figure 2b: Contour plot of dissolution as a 
function of Parameters 1 and 2. 

 

 
 

Figure 2c: Proposed design space, 
comprised of the overlap region of ranges 
for friability and or dissolution. 
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?
(ICH Q8 appendix)

“Distribution of predicted responses” = “stochastic process” + “measurement error”

(courtesy of J.J. Peterson)



Desirability concern

Most of multi-criteria decision do not tolerate trade-off
− Quality attributes (responses) must in general achieve pre-defined 

specification
• If the product attribute(s) is below specification, it is sub-standard and thrown away…

− Desirability: what is the optimal condition that make most of my attributes 
desirable?

• But… Will it work tomorrow ?

− Probability: what is the (joint) probability that (all) my attributes will meet those 
specifications?

• The joint probability measure is actually a good global desirability index
- P(success) = 1 is the most desirable situation and P(success) = 0 the less enviable one
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A little help from my friends: Design Space
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Facts
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Desired state

Product quality and performance achieved and assured by design
of effective and efficient manufacturing processes

Product specifications based on mechanistic understanding of how 
formulation and process factors impact product performance

Ability for continuous improvement and assurance of quality
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Regulatory Framework

Quality by Design (QbD) vs. Quality by Testing (QbT)

Increased 
knowledge

Science based Assurance of 
quality

Design Space
(DS)



Regulatory Framework

ICH Q8: Design Space (DS):

"the multidimensional combination and interaction of input variables and process 
parameters that have been demonstrated to provide assurance of quality »
"working within the DS is not considered as a change »
"Understand and gain knowledge about a process to find a parametric region of 
reliable robustness for future performance of this process"



Process characterisation

Process

Critical Process Parameters (X) :
•Quantitative
•Qualitative
•In-process

Output

Noises
•Input variables
•Non-controlled variables
•Material noise

Critical Quality Attributes (Y)
=> specifications

Running two times the process 
with X unchanged will not 
provide two times the same output



Specifications

Predictive 
Model, 
Y=f(X,q)

lL1 <Y1 < lU1

lL2 <Y2 < lU2

Process / Method

Output

explains

P(Y∈Λ) ?

Design Space

Running two times the process 
with X unchanged will not 

provide two times the same output Y
Critical Quality Attributes

Specifications

X
•Quantitative
•Qualitative
•In-process Noises

•Input variables
•Non-controlled variables

•Material noise
Designed experiments

Critical Process Parameters:

DS

P(Y∈Λ) ≥ p

Input Variables
Operating conditions...

Assurance
…to ensure in the future…

Quality
…outputs will meet specifications

c



Terminology from ICH Q8

Experimental space/experimental domain

Design space

Maximum operating range

Normal operating range

Set Point

0-20%

80-100%

20-40%

40-60%

60-80%

PoS

20



The Ugly (again): PAR: univariate ranges

Risk: over-optimistic process operating 
ranges
Using PAR as MOR is not a good idea

21



Bayesian manifesto

Why a Bayesian approach ?
− Because we want to predict (outcome of the process steps)
− Because we want to make probabilistic statements of an outcome  

• -> P(success) or P(OOS)
− Because we may (sometimes) have prior knowledge
− Because, thanks to MCMC simulations, we can handle simple to very complex models in a unified framework (yes, 

speed of implementation matters more than running speed of the samplers)
• In general, models are pretty simple. e.g. two-way random ANOVA models… but with unbalanced data, prediction as a 

frequentist is already not a good option…
− Because, thanks to Monte-Carlo methods, I can pool and propagate all uncertainties from the beginning to the end 

of the process
• Why focus on maximum likelihood when we can play with all the posterior distribution ?

− Because we want to predict
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The Multivariate Regression



Desirable Modelling Method Criteria 

1. Provide prediction of individual outcome (design space)
2. Leverage knowledge and prior information to provide better accuracy/precision 

and minimize experiments
3. Multivariate (joint output and systems estimation)
4. Flexible (unbalanced experiments/sampling, hierarchical data, does not require 

Gaussian data)



1) Prediction of individual outcome

To circumvent the danger of the use of the mean responses, it is sufficient to deal with the 
predictive distribution instead (more on that later)

Why would you create a response surface design, an I-optimal design or a definitive 
screening design to stop with the mean?
− All these designs are good to minimize the overall (or maximum) variance of prediction
− So, at the modeling step, don’t forget to include the variance of prediction !



2) Prior knowledge: Frequentist vs. Bayesian Methods

-∞ +∞

X
X

X
X  

X
X

X
X  

Based on a point estimates Based on a distribution

Posterior 
Distribution

Prior 
Distribution

New Information

Frequentist Bayesian



3) Multivariate

Reality is multivariate
− Several CQAs must jointly fall within the specifications
− Output of unit operation affects downstream results
− Interactions are not rare

May be strong dependencies between the CQAs
When using reduced DOEs (fractional factorials,etc.), degrees of 
freedom can become a challenge



4) Flexibility 

Multiple levels of hierarchy
Unbalanced Sampling
Flexible Probability Distribution



Bayesian Methods Meet These Criteria 

Bayesian methods provide a true prediction of individual unit future 
performance, i.e., the probability of meeting specification 
Leverage prior knowledge and experimentation, leading to better estimates, and 
fewer experiments and samples
− addresses the shrinking degrees of freedom problem

Complicated hierarchy/ sampling plan not a problem 
Bayesian modelling easily allows multivariate models
− Joint prediction of multiple CQAs
− Systems approach to unit operations 

Uncertainty of parameters included, thus improving prediction and reducing risk
Not affected by non-centering within specification range



To avoid using mean responses, one need a little bit more:
The Predictive distribution
− Function of the data uncertainty
− Account for parameter uncertainty
− Possibly account for prior knowledge

Bayes’ theorem (~1763)

30

30 2. Bayesian methodologies

(Guttman, 1988).

The first sections of this chapter describes the basis of Bayesian analysis in very
general terms. Chapters 3 and 4 illustrate some applications of Bayesian methodolo-
gies to get a predictive distribution for the examples that are used in this manuscript:
the standard multivariate regression, the one-way random ANOVA, the hierarchi-
cal linear regression and the mixed-e�ect non-linear regression with model for the
variance.

2.1 Bayes’ theorem

In the Bayesian framework, the quantities of interest are assumed to be random
values that follow a probability distribution. If y = (y1, ..., yn) is the vector of
n observations of the random value Y , that depends upon some parameters � =
(�1, ..., �p), then it has a probability density function p(y | �, I). I represents any
pertinent information included, translated into assumptions about the distribution.
For simplicity, I might be ignored in the notations to shorten equations.

The uncertainty about the unknown parameters � is also expressed using a dis-
tribution p(� | I). Applying the rule of products:

p(y | �) . p(�) = p(y, �) = p(� | y) . p(y). (2.1)

Isolating the distribution of � conditional to the data y, the following result is
obtained:

p(� | y) = p(y | �) p(�)
p(y)

= p(y | �) p(�)
�

� p(y | �) p(�) d�

Posterior = Likelihood � Prior
Marginal likelihood . (2.2)

This is the well-known Bayes’ theorem. p(� | y) is called the posterior density of �,
expressing how � is distributed given the data. It is often written p(� | data). p(�)
is referred as its prior density. It expresses what is known about � before any look
on the data.

p(y | �) is the likelihood function and is also written L(� | y). p(y) is the
marginal likelihood and is a normalizing constant depending only on the data. Its
main utility is to ensure the posterior density integrates to 1. p(y) being a constant,

2. Bayesian methodologies 31

Equation (2.2) is often simplified into

p(� | y) ⇥ L(� | y) . p(�)
Posterior ⇥ Likelihood � Prior, (2.3)

where ⇥ stands for “equals up to a constant”. The posterior density of � is the prior
knowledge of � that is updated through the likelihood function.

The prior distribution of � can be the expression of ignorance about �. In this
case, a non-informative prior distribution, or vague prior distribution, is used. This
distribution is generally very flat over the domain of � (notice that giving a vague a
priori is considered as a pertinent information I about �). On the opposite, if pre-
vious experiments give clues about �, or if general knowledge about the application
domain provides useful information (i.e. location, spread), it can be incorporated in
the definition of p(�) as an informative a priori.

The use of a prior distribution for the parameters is what makes the di�erence
with the frequentist approach, and is sometimes viewed as a strong argument against
the Bayesian approach, because it is mandatory to set these prior values. This
argument can however be reverted as it would be harmful not incorporating any
useful and valid information about �. In addition, when non-informative a priori are
used, this leads to results similar to frequentist statistics: the posterior distribution
has the same form than the likelihood.

The di�culty to set up priors increases with the dimensionality of parameters
(Gelman et al., 2008; Kerman, 2011). This is a common problem for the Bayesian
analysis that can be addressed through some sensitivity studies of the e�ect that
the prior information has on the posterior distribution.

2.2 Posterior distribution of the parameters

In Bayesian statistics, the Equations (2.2) and (2.3) must be solved. This can be
done analytically or using numerical methods. The most desirable situation arises
when it is possible to find the analytical form of p(� | y), and to identify its under-
lying distribution. This option is realistic when working on simple problems (small
dimension, linearity, classical distribution assumptions, simple priors etc.) but of-
ten, the full joint posterior distribution of the parameters remains unidentified. In
that case, numerical solutions based on sampling methodologies might be envisaged.
The reasons why the posterior distribution can remain unidentified are of various
natures.

Parameters distribution: the model
+ the prior knowledge



p(ỹ | y) =
Z

✓
p(ỹ | ✓) p(✓ | y) d✓ (1)

Design Space = {x̃ 2 � | P(ỹ 2 ⇤ | x̃, data) � ⇡} (2)

p(ỹ 2 ⇤ | data) ' 1
n⇤

n⇤X

s=1

I(ỹ(s) 2 ⇤)

1

A Little bit of background

Prediction
− Achieved by replacing/integrating the parameters, 

including their (posterior) uncertainty, within the model

- Density of the prediction given a particular value of the parameters (the 
likelihood function)

- Posterior distribution of the model parameters
- Predictive distribution of a new response, integrating out the parameter 

distribution

31



…

Let’s skip the math

See e.g. 
− J.J. Peterson, A posterior predictive approach to multiple response surface optimization, J. Qual. Technol. 

36(2) (2004) 139-153.
− J.J. Peterson, A Bayesian approach to the ICH Q8 definition of design space. J. Biopharm. Stat. 18 

(2008) 959-975.
− J.J. Peterson and K. Lief. The ICH Q8 Definition of Design Space: A Comparison of the Overlapping 

Means and the Bayesian Predictive Approaches. Statistics in Biopharmaceutical Research, 2:249–259, 
2010. 

− P. Lebrun, B. Boulanger, B. Debrus, Ph. Lambert, Ph. Hubert, A Bayesian Design Space for analytical 
methods based on multivariate models and predictions, J. Biopharm. Stat. (2012) 
http://hdl.handle.net/2268/128222

− P. Lebrun, F. Krier, J. Mantanus, H. Grohganz, M. Yang, E. Rozet, B. Boulanger, B. Evrard, J. Rantanen, 
and P. Hubert. Design Space Approach in The Optimization of The Spray-Drying Process. European 
Journal of Pharmaceutics and Biopharmaceutics, 80(1):226–234, 2012b. 

− Lebrun, P., Giacoletti, K., Scherder, T., Rozet, E., Boulanger, B., 2015. A quality by design approach for 
longitudinal quality attributes. J. Biopharm. Stat. 25, 247–259. 

− My PhD thesis freely available on
http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-12192012-155142/



Predictive distribution (summary)

Model for multivariate regression

Non-informative priors (~classical results) Informative priors

• Posterior:
• Predictive:

38 3. Bayesian standard multivariate regression

A set of m multiple linear regression equations is then developed,

y1 = X�1 + ⇥1,
...

yj = X�j + ⇥j, (3.1)
...

ym = X�m + ⇥m,

where �j are the (p ⇥ 1) model parameters for the jth responses and elements of
⇥j = (⇥1j, ..., ⇥ij, ..., ⇥nj)⇤ are independent and identically distributed (i.i.d.) as a
Normal. As the model matrix X is common for each response, it is possible to write
the multivariate model in matrix form:

Y
(n⇥m)

= X
(n⇥p)

B
(p⇥m)

+ E
(n⇥m)

, (3.2)

where E is the (n⇥m) matrix for the errors, with 0-mean and semi-definite positive
covariance matrix ⇤. B is the (p ⇥ m) matrix containing the regression parameters
of the multivariate model.

3.1 Likelihood

From Equation 3.2 and assumptions about the error, each of the n observed
response vector yi, of size m, i = 1, ..., n, is also i.i.d. and assumed to follow a
multivariate Normal distribution given the parameters B and ⇤. Then,

yi ⇤ Nm (xiB, ⇤) , i = 1, ..., n, (3.3)

where xi is the line i of X. The joint density of the n vectors of error ⇥i = yi � xiB
defines the likelihood function and is

L (B, ⇤ | Y) = (2�)�mn
2 |⇤|

�n
2 . exp

⇤

�1
2

n⇧

i=1

⌃
(yi � xiB) ⇤�1 (yi � xiB)⇤

⌥⌅

,

or, more conveniently,

L (B, ⇤ | Y) ⌅ |⇤|
�n

2 . exp
�

�1
2tr

⌃
⇤�1 (Y � XB)⇥ (Y � XB)

⌥⇥
(3.4)

The next two sections present the posterior distributions and the predictive distri-
butions of new responses obtained when using di�erent prior distributions. Section
3.2 gives the well known solutions for these distributions when a non-informative
prior distribution is chosen for the parameters. In Section 3.3 a solution is proposed
when using proper informative and conjugate prior distributions for the parameters.
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3.2 Solution with non-informative priors

With non-informative priors, the posterior density of the parameters has been
well described by Geisser and Cornfield (1963), Geisser (1965) and Box and Tiao
(1973). In the same non-informative context, the predictive distribution of a new (or
several) response vector(s) has been described as a multivariate Student distribution
by Zellner and Chetty (1965), Johnson (1987) or Press (2003). In the Design Space
context, the benefits to use such a predictive distribution have already been shown
by Miró-Quesada et al. (2004) and Peterson (2004).

3.2.1 Prior distributions

The following joint non-informative prior distribution has been proposed by
Geisser and Cornfield (1963) to express ignorance about the parameters:

p (B, ⇥) ⇤ |⇥|�
1
2 (m+1) . (3.5)

Notice this assumes the independence of the parameters B and ⇥ a priori, which has
been advocated by Je✏reys (1961) and Savage (1962) when little is known about both
parameters. This distribution has the advantage to be invariant under parameter
transformation.

3.2.2 Posterior distributions

Combining the prior distribution of Equation (3.5) with the likelihood using
Bayes’ theorem yields the joint posterior distribution p (B, ⇥ | data) ⇤ L (B, ⇥ | Y).
p (B, ⇥). However, the joint posterior density is unpractical to work with so the
marginal and conditional distributions of the parameters have been derived as de-
scribed in the beginning of Section 2.2, page 31.

Conditional distribution of B given ⇥

The conditional posterior distribution of B given ⇥ is expressed as the following
matrix-variate Normal distribution (see Appendix D.4 for the distribution defini-
tion):

B | ⇥, data ⇥ Np⇥m

�
B̂, ⇥, (X⇤X)�1⇥

, (3.6)
or, equivalently,

vec(B | ⇥, data) ⇥ Npm

�
vec(B̂), ⇥ � (X⇤X)�1⇥

. (3.7)
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Still for implementation purpose, as the inverse-Wishart distribution is sometimes
unavailable, one can use the following equivalence:

⇤ | data � W �1
1 (A, �) ⇥ ⇤�1 | data � W1(A�1, �), (3.11)

A more detailed presentation of the Wishart and inverse-Wishart distributions is
available in Appendix D.1 and D.2.

It is then possible to draw samples from the joint posterior distribution of the
parameters using Equations (3.9), (3.10) or (3.11) followed by (3.6). When analysing
the regression e✏ects, Equation (3.8) provides an easier way to obtain samples or
statistics from B | data.

3.2.3 Predictive distribution of a new response vector

A new response vector ỹ at one new point x̃ included in the experimental domain
is obtained from the predictive distribution, defined as,

p (ỹ | x̃, data) =
⇤

⇥

⇤

B
p (ỹ | x̃, B, ⇤) .p (B, ⇤ | data) .dB.d⇤ (3.12)

In the particular case of standard multivariate regression, this can be solved
and the predictive distribution of ỹ | x̃ is identified as a multivariate Student’s
distribution (Press, 1972; Kibria, 2006):

ỹ | x̃, data � Tm

�
x̃B̂,

�
1 + x̃�(X�X)�1x̃

⇥
A, �

⇥
, (3.13)

where
�
1 + x̃�(X�X)�1x̃

⇥
A/� is the estimated scale or spread matrix of the multi-

variate distribution, with � degrees of freedom (� > 0). For more information about
the multivariate Student’s distribution, refer to Appendix D.5.

3.3 Solution with informative priors

There is little literature existing on the use of informative prior distribution in
multivariate regression problem. Concerning univariate multiple linear regression,
Marriott and Spencer (2001) have shown the methodology to derive the posterior
distribution of the parameters and the predictive distribution of a new responses.
They used conjugate informative priors and illustrated the simplicity of updating
prior information. In this section, only the solutions are presented. Detailed deriva-
tions can be found in Appendix A.
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3.3.1 Prior distributions

For multivariate (multiple linear) regression, a classical conjugate joint prior for
(B, ⇤�1) is the Normal-Wishart distribution. In this case, Guttman (1988); Press
(2003) showed that the posterior distribution of (B, ⇤�1) also follows a Normal-
Wishart. Similarly, it is possible to use the following decomposition of the prior
distribution: p(B, ⇤) = p(B | ⇤)p(⇤) (Press, 1972). This is a simplified form for
the Normal-inverse-Wishart as in Aitchison and Dunsmore (1975). One can see
the similarity of such prior construction with the posterior distributions defined in
Equations (3.6) and (3.9).

Conjugate prior distributions for both p(B | ⇤) and p(⇤) can be given. First,
the prior distribution of B | ⇤ is defined as the (p ⇥ m)-dimensional matrix-variate
Normal distribution with mean B0 (same dimension than B) and covariance matrices
⇤ and ⇤0, for the columns and the rows of B, respectively. That is,

B | ⇤ ⇤ Np⇥m (B0, ⇤, ⇤0) . (3.14)

The dependency on ⇤ leads to the restriction that the (p ⇥ p) prior matrix ⇤0 is
common for every m responses, i.e. all the corresponding regressors �1,...,j,...,m have
a similar prior covariance. Nevertheless, this restriction eases the identification of
the posterior and predictive distributions.

Second, the prior distribution for ⇤ is chosen as an inverse-Wishart distribution
(defined as in Box and Tiao, 1973):

⇤ ⇤ W �1
1 (⇥, �0), (3.15)

where ⇥ is the a priori responses scale matrix, that has the same interpretation as
a sum of squared errors. For instance, it might be ⇥ = ⇤prior.�0, where ⇤prior is
a covariance matrix estimated over previous experiments. �0 > 0 is the number of
degrees of freedom of the prior distribution. The value of �0 indicates the certainty
that one may have in ⇥. For a simple interpretation of the prior distribution, we
define �0 in the same form than �. That is, �0 = n0 � (m + p) + 1. It is advised
to keep �0 (or n0) as low as possible to moderate the prior subjectivity. Sensitivity
analysis can be done as well. n0 can be seen as the number of virtual observations
of the prior distribution.
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3.3.2 Posterior distributions

Given the likelihood and the prior distributions (Equations (3.14) and (3.15)),
and applying Bayes’ theorem, the joint posterior density of the parameters is

p (B, ⇤ | data) ⇤L (B, ⇤ | Y) .p (B | ⇤) .p (⇤) (3.16)

⇤ |⇤|
�n

2 . exp
⇤

�1
2tr

⇧
⇤�1 (Y � XB)⇥ (Y � XB)

⌃⌅

. |⇤|
�p
2 . exp

⇤
�1

2tr
⇧
⇤�1(B � B0)

⇥⇤�1
0 (B � B0)

⌃⌅

. |⇤|
��0�2m

2 . exp
⇤

�1
2tr

�
⇥⇤�1

⇥⌅
.

A metropolis-hasting algorithm can be implemented to explore this posterior dis-
tribution. However, to avoid e�cacy trouble when dimensionality is moderate or
high, it advised to use a built-in sampler such as WinBUGS (Lunn et al., 2000).
Unfortunately, WinBUGS cannot be used directly to sample from the proposed joint
posterior distribution. First, to be able to carry the computations, the matrix of
regression parameters B must be converted into its vector form (see the equivalence
in Equation (3.7)). Second, the dependence between ⇤ and B would imply a Kro-
necker product in the multivariate Normal prior for vec(B). WinBUGS has been
found unable to deal with such operation.

To permit the computation, the WinBUGS code then slightly departs from the
assumptions in that it forces the prior for ⇤ and B to be independent (i.e. p(B, ⇤) =
p(B).p(⇤)). This has a direct implication on the degrees of freedom (d.f.). Indeed,
p(B) no longer depends on ⇤. As a result, |�|

�p
2 would then be missing in the prior

density p(B) (see the third line of Equation (3.16)). For this reason, p d.f. are lost
due to the independent prior. To compare results, one may simply add these p d.f.
to the prior p(⇤) in WinBUGS, as shown in listing 3.1.

To use this code with a non-informative a priori on B, "InvSigxSig0" is defined as
a low precision (pm ⇥ pm) matrix. For the regression part (function inprod(...)), the
elements of vec(B) that corresponds to each response are selected, which translates
the matrix product XB. Finally, the Wishart distribution (function dwish(...)) is
adapted to be in accordance with Box and Tiao (1973) (see comment on page 40).
The degrees of freedom are then (�0 + p) + m � 1. Finally, notice the di�erent
implementation of the Wishart distribution in Winbugs, that uses ⇥ instead of
⇥�1.

The sampler performs well when the dimensionality of the problem is low to
moderate, but the computational burden remains high when the number of responses
and parameters increases. Convergence can also be slow to achieve. Thus, it is
preferable to identify the posterior distribution of the parameters. Fortunately, in
this case, it is possible to identify them.
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When the prior distributions are uniform, A⇥ is reduced to A = (Y � XB̂)�(Y �
XB̂), which is the matrix presented by Geisser (1965) and Box and Tiao (1973) for
the non-informative case.

The posterior d.f. is the sum of the d.f. coming from the likelihood (�), plus the
number of virtual observations n0, coming from the prior parameter distributions.

Marginal distribution of ⇧

Integrating B out of (3.16) gives the marginal density of ⇧, identified as the
following inverse-Wishart distribution:

(⇧ | data) ⇥ W �1
1 (⌅ + A⇥, � + n0) = W �1

2 (⌅ + A⇥, � + n0 + m � 1) , (3.19)

Samples from the joint posterior (B, ⇧ | data) can be obtained by using Equation
(3.19) followed by Equation (3.17).

3.3.3 Predictive distributions of a new response vector

In the informative case, the predictive distribution becomes:

ỹ | x̃, data ⇥ Tm

�
x̃MBpost,

�
1 + x̃�(X�X + ⇧�1

0 )�1x̃
⇥

(⌅ + A⇥), � + n0
⇥

. (3.20)

That is, in the informative case, the multivariate Student’s distribution is centered
around the posterior mean regression surface, instead of its least-square estimates.
With uniform prior distributions, Equation (3.20) naturally reduces to Equation
(3.13).

Notice that for a joint prediction of a set of ñ input conditions x̃1, ..., x̃ñ, the
predictive distribution nicely extends to a matrix-variate Student’s distribution, as
presented in Appendix A.

With such results, Gibbs sampling or MCMC techniques are not required and
predictions can be obtained directly from this predictive distribution. This allows
a potentially immediate computation of Design Space when the modeled responses
are the Critical Quality Attributes of interest.
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Listing 3.1: BUGS code for the multivariate regression.
model
{
#For each o b s e r v a t i o n
for ( i in 1 : n) {

Y[ i , 1 :m] ~ dmnorm(mu.Y[ i , 1 :m] , invSigma [ , ] ) #l i k e l i h o o d

#For each response
for ( j in 1 :m){

mu.Y[ i , j ] <� inprod ( vecB [ ( ( p�( j �1))+1):( j �p ) ] , X[ i , 1 : p ] )
}

}

#p r i o r d i s t r i b u t i o n
vecB [ 1 : (m�p ) ] ~ dmnorm( vecB0 [ 1 : (m�p ) ] , InvS igxS ig0 [ , ] )
invSigma [ 1 :m, 1 :m] ~ dwish (Omega [ , ] , nu0 + p + m �1)

#conver t p r e c i s i o n matrix i n t o covar iance matrix
Sigma [ 1 :m, 1 :m] <� i n v e r s e ( invSigma [ , ] )

}

Conditional distribution of B given ⇧

The conditional posterior distribution of B given ⇧ can be identified as the
following matrix-variate Normal:

B | ⇧, data ⇥Np⇥m

⇤
MBpost, ⇧,

�
X�X + ⇧�1

0
⇥�1⌅

(3.17)

where

MBpost =
�
X�X + ⇧�1

0
⇥�1 �

X�XB̂ + ⇧�1
0 B0

⇥
.

One can see that the posterior mean MBpost is a linear combination of the least-
square estimation of B (B̂ = (X⌅X)�1 X⌅Y) and its prior mean B0, weighted by their
respective precision matrix (inverse of covariances). The posterior row covariance is
the inverse of the sum of the matrix (X�X) and of the prior row precision matrix
⇧�1

0 .

Marginal distribution of B

It is possible to integrate ⇧ out of the joint posterior distribution in order to
identify a simple form for the marginal posterior distribution of B. It follows a
matrix-variate Student’s distribution.

B | data ⇥ Tp⇥m

⇤
MBpost, ⌅ + A⇤,

�
X�X + ⇧�1

0
⇥�1

, � + n0

⌅
(3.18)

with A⇤ = Y�Y + B�
0⇧�1

0 B0 � (X�XB̂ + ⇧�1
0 B0)

�(X�X + ⇧�1
0 )�1(X�XB̂ + ⇧�1

0 B0).
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The operator vec, applied on a (p ⇥ m) matrix, stacks its columns into a vector of
length pm. This is rather useful for implementation purpose as the matrix-variate
Normal is usually not available in softwares. The matrix-variate Normal has location
parameter B̂ of dimension (p ⇥ m) and covariance matrices ⇤ and (X⇤X)�1. B̂ is
the least-square estimator of B:

B̂ = (X⇤X)�1 X⇤Y.

Marginal distribution of B

When envisaging linear modeling, it is often interesting to focus on the analy-
sis of the e�ects of the input variables and their interpretation. For instance, in a
screening experimental design, the distribution of the regression parameters is cen-
tral. Integrating ⇤ out of the joint posterior, the marginal posterior distribution of
B is given by:

B | data ⇤ Tp⇥m

⇤
B̂, A,

�
X�X

⇥�1
, �

⌅
, (3.8)

i.e. a matrix-variate Student’s distribution with location B̂, scale matrices A and�
X�X

⇥�1
and � = n � (m + p) + 1 degrees of freedom (See Appendix D.6). The

A matrix is the (m ⇥ m) symmetric semi positive definite scale matrix defined as
(Y � XB̂)⇤(Y � XB̂). A is proportional to the estimated sample covariance matrix
⇤.

Marginal distribution of ⇤

The marginal posterior distribution of ⇤ is obtained by integrating B out of the
joint posterior, and is:

⇤ | data ⇤ W �1
1 (A, �), � > 0, (3.9)

This is an m-dimensional inverse-Wishart with � degrees of freedom (see Appendix
D.2). Notice that the analytical form of the inverse-Wishart distribution W �1

1 used
by Geisser (1965) or Box and Tiao (1973) is slightly di�erent than the one that may
be found in more recent works or that is usually implemented in softwares such as
R, WinBUGS or SAS (Dawid, 1981). The inverse-Wishart distribution W �1

1 has,
say, � d.f. (� > 0), while the one in R or WinBUGS, noted W �1

2 , has an equivalent
of � + m � 1 d.f. with � > m � 1 (e.g. package MCMCpack, Martin et al., 2010). This
is of particular importance to compare results with the ones that may be found in
the references. In summary,

⇤ | data ⇤ W �1
1 (A, �) = W �1

2 (A, � + m � 1). (3.10)
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say, � d.f. (� > 0), while the one in R or WinBUGS, noted W �1

2 , has an equivalent
of � + m � 1 d.f. with � > m � 1 (e.g. package MCMCpack, Martin et al., 2010). This
is of particular importance to compare results with the ones that may be found in
the references. In summary,

⇤ | data ⇤ W �1
1 (A, �) = W �1

2 (A, � + m � 1). (3.10)
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The operator vec, applied on a (p ⇥ m) matrix, stacks its columns into a vector of
length pm. This is rather useful for implementation purpose as the matrix-variate
Normal is usually not available in softwares. The matrix-variate Normal has location
parameter B̂ of dimension (p ⇥ m) and covariance matrices ⇤ and (X⇤X)�1. B̂ is
the least-square estimator of B:

B̂ = (X⇤X)�1 X⇤Y.

Marginal distribution of B

When envisaging linear modeling, it is often interesting to focus on the analy-
sis of the e�ects of the input variables and their interpretation. For instance, in a
screening experimental design, the distribution of the regression parameters is cen-
tral. Integrating ⇤ out of the joint posterior, the marginal posterior distribution of
B is given by:
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A set of m multiple linear regression equations is then developed,

y1 = X�1 + ⇥1,
...

yj = X�j + ⇥j, (3.1)
...

ym = X�m + ⇥m,

where �j are the (p ⇥ 1) model parameters for the jth responses and elements of
⇥j = (⇥1j, ..., ⇥ij, ..., ⇥nj)⇤ are independent and identically distributed (i.i.d.) as a
Normal. As the model matrix X is common for each response, it is possible to write
the multivariate model in matrix form:

Y
(n⇥m)

= X
(n⇥p)

B
(p⇥m)

+ E
(n⇥m)

, (3.2)

where E is the (n⇥m) matrix for the errors, with 0-mean and semi-definite positive
covariance matrix ⇤. B is the (p ⇥ m) matrix containing the regression parameters
of the multivariate model.

3.1 Likelihood

From Equation 3.2 and assumptions about the error, each of the n observed
response vector yi, of size m, i = 1, ..., n, is also i.i.d. and assumed to follow a
multivariate Normal distribution given the parameters B and ⇤. Then,

yi ⇤ Nm (xiB, ⇤) , i = 1, ..., n, (3.3)

where xi is the line i of X. The joint density of the n vectors of error ⇥i = yi � xiB
defines the likelihood function and is

L (B, ⇤ | Y) = (2�)�mn
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The next two sections present the posterior distributions and the predictive distri-
butions of new responses obtained when using di�erent prior distributions. Section
3.2 gives the well known solutions for these distributions when a non-informative
prior distribution is chosen for the parameters. In Section 3.3 a solution is proposed
when using proper informative and conjugate prior distributions for the parameters.
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One last word : Degrees of Freedom

In multivariate regression, n = n-(m+p)+1 (compare to the classical n-p)

Hence, some additionnal d.f. are lost (m), du to the fact that one must
− 1) estimate p different parameters for each response
− 2) estimate the correlation/covariance between the responses.

When creating a design, most D-optimal and I-optimal algorithm makes sure that some 
degrees of freedom are left after estimation of the model

In multi-response problems however, this is not taken into account



Implementation

The choice of R ?
Basic existing functionalities (lm(),...)
Extending to multivariate responses
− Predictive distribution
− Normal and Student’s t

Monte-Carlo simulations using R



Why R

Unfortunately, predictive distribution is not very used
− Focus on parameters, not prediction
− When focus on prediction, only univariate mean responses and in 

the best case, confidence intervals
− When envisaging the uncertainty, poorly defined statistical 

frameworks are generally used
• (See GUI software for statistical analysis)



Why R

Several tons of available packages
− Often, a complete solution to the problem already exists

A language built for statistics and mathematics
Infinite flexibility... powerful language
Beautiful graphics
Free



R introduction

How to create a linear model object... from a designed 
set of experiments

> head(data)
Inlet.Temperature Feed.Rate Spray.Flow.Rate Yield Tapped.Density Moisture.Content Bulk.density Fraction.Resp

1               165       5.0              45 82.60         0.4613              0.9        0.419        58.710
2               110       2.5              30 73.76         0.4777              0.5        0.407        45.565
3               110       2.5              60 83.77         0.4811              0.7        0.436        66.970
4               110       7.5              30 42.88         0.4934              0.8        0.406        22.440
5               110       7.5              60 65.13         0.3213              1.1        0.288        30.440
6               165       5.0              45 88.50         0.4611              1.0        0.419        53.810

> # data transformation : ensure good modeling properties
> data["yield"]  = log(data["Yield"]/(100-data["Yield"])) # percentage (not negative or > 100)
> data["tapped"] = log(data["Tapped.Density"]) # positivity
> data["moisture"] = log(data["Moisture.Content"])  # positivity
> data["bulk"] = log(data["Bulk.density"])   # positivity
> data["fraction"] = log(data["Fraction.Resp"]/(100-data["Fraction.Resp"])) # percentage

> model =  lm(yield ~ Inlet.Temperature + Feed.Rate + Spray.Flow.Rate +
I(Inlet.Temperature^2) + I(Feed.Rate^2) +
Inlet.Temperature:Spray.Flow.Rate + Inlet.Temperature:Feed.Rate:Spray.Flow.Rate, data)

X Y



Bayesian predictive model
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A set of m multiple linear regression equations is then developed,
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Normal. As the model matrix X is common for each response, it is possible to write
the multivariate model in matrix form:
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+ E
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, (3.2)

where E is the (n◊m) matrix for the errors, with 0-mean and semi-definite positive
covariance matrix �. B is the (p ◊ m) matrix containing the regression parameters
of the multivariate model.

3.1 Likelihood

From Equation 3.2 and assumptions about the error, each of the n observed
response vector y

i

, of size m, i = 1, ..., n, is also i.i.d. and assumed to follow a
multivariate Normal distribution given the parameters B and �. Then,
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The next two sections present the posterior distributions and the predictive distri-
butions of new responses obtained when using di�erent prior distributions. Section
3.2 gives the well known solutions for these distributions when a non-informative
prior distribution is chosen for the parameters. In Section 3.3 a solution is proposed
when using proper informative and conjugate prior distributions for the parameters.
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The next two sections present the posterior distributions and the predictive distri-
butions of new responses obtained when using di�erent prior distributions. Section
3.2 gives the well known solutions for these distributions when a non-informative
prior distribution is chosen for the parameters. In Section 3.3 a solution is proposed
when using proper informative and conjugate prior distributions for the parameters.
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3.2 Solution with non-informative priors

With non-informative priors, the posterior density of the parameters has been
well described by Geisser and Cornfield (1963), Geisser (1965) and Box and Tiao
(1973). In the same non-informative context, the predictive distribution of a new (or
several) response vector(s) has been described as a multivariate Student distribution
by Zellner and Chetty (1965), Johnson (1987) or Press (2003). In the Design Space
context, the benefits to use such a predictive distribution have already been shown
by Miró-Quesada et al. (2004) and Peterson (2004).

3.2.1 Prior distributions

The following joint non-informative prior distribution has been proposed by
Geisser and Cornfield (1963) to express ignorance about the parameters:

p (B, �) Ã |�|≠
1

2

(m+1) . (3.5)

Notice this assumes the independence of the parameters B and � a priori, which has
been advocated by Je�reys (1961) and Savage (1962) when little is known about both
parameters. This distribution has the advantage to be invariant under parameter
transformation.

3.2.2 Posterior distributions

Combining the prior distribution of Equation (3.5) with the likelihood using
Bayes’ theorem yields the joint posterior distribution p (B, � | data) Ã L (B, � | Y).
p (B, �). However, the joint posterior density is unpractical to work with so the
marginal and conditional distributions of the parameters have been derived as de-
scribed in the beginning of Section 2.2, page 31.

Conditional distribution of B given �

The conditional posterior distribution of B given � is expressed as the following
matrix-variate Normal distribution (see Appendix D.4 for the distribution defini-
tion):

B | �, data ≥ N
p◊m

1
B̂, �, (XÕX)≠12

, (3.6)
or, equivalently,

vec(B | �, data) ≥ N
pm

1
vec(B̂), � ¢ (XÕX)≠12

. (3.7)
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The operator vec, applied on a (p ◊ m) matrix, stacks its columns into a vector of
length pm. This is rather useful for implementation purpose as the matrix-variate
Normal is usually not available in softwares. The matrix-variate Normal has location
parameter B̂ of dimension (p ◊ m) and covariance matrices � and (XÕX)≠1. B̂ is
the least-square estimator of B:

B̂ = (XÕX)≠1 XÕY.

Marginal distribution of B

When envisaging linear modeling, it is often interesting to focus on the analy-
sis of the e�ects of the input variables and their interpretation. For instance, in a
screening experimental design, the distribution of the regression parameters is cen-
tral. Integrating � out of the joint posterior, the marginal posterior distribution of
B is given by:

B | data ≥ T
p◊m

3
B̂, A,

1
XÕX

2≠1
, ‹

4
, (3.8)

i.e. a matrix-variate Student’s distribution with location B̂, scale matrices A and1
XÕX

2≠1
and ‹ = n ≠ (m + p) + 1 degrees of freedom (See Appendix D.6). The

A matrix is the (m ◊ m) symmetric semi positive definite scale matrix defined as
(Y ≠ XB̂)Õ(Y ≠ XB̂). A is proportional to the estimated sample covariance matrix
�.

Marginal distribution of �

The marginal posterior distribution of � is obtained by integrating B out of the
joint posterior, and is:

� | data ≥ W ≠1
1 (A, ‹), ‹ > 0, (3.9)

This is an m-dimensional inverse-Wishart with ‹ degrees of freedom (see Appendix
D.2). Notice that the analytical form of the inverse-Wishart distribution W ≠1

1 used
by Geisser (1965) or Box and Tiao (1973) is slightly di�erent than the one that may
be found in more recent works or that is usually implemented in softwares such as
R, WinBUGS or SAS (Dawid, 1981). The inverse-Wishart distribution W ≠1

1 has,
say, ‹ d.f. (‹ > 0), while the one in R or WinBUGS, noted W ≠1

2 , has an equivalent
of ‹ + m ≠ 1 d.f. with ‹ > m ≠ 1 (e.g. package MCMCpack, Martin et al., 2010). This
is of particular importance to compare results with the ones that may be found in
the references. In summary,

� | data ≥ W ≠1
1 (A, ‹) = W ≠1

2 (A, ‹ + m ≠ 1). (3.10)

> Y = as.matrix(datas[4:ncol(data)])
> # If only the X matrix could be obtained easily... 
> #I am sure
> # lm() is computing it for me using the formula !



R

contrasts also play an important role
− Ever wonder why results are not the same in SAS and in R when using qualitative factors ?
− ex : Run is a qualitative factor

In our example, no qualitative factor... ok then !

> X =  model.matrix(delete.response(terms(model)), data, model$contrasts)

> # Recreate the X matrix from the factors in data, including the intercept,
> # the squared terms, the interactions, etc.

> contrasts(data$Run,length(unique(data$Run))) = contr.SAS(length(unique(data$Run)),contrasts=FALSE)

> # Now, use you can use Run in a R formula and confirm a SAS result !
> # ?contr.SAS will give you all the possibilities

> head(X)
> (Intercept) Inlet.Temperature Feed.Rate Spray.Flow.Rate I(Inlet.Temperature^2) I(Feed.Rate^2)  ...
> 1           1               165       5.0              45                  27225          25.00  ...
> 2           1               110       2.5              30                  12100           6.25  ...
> 3           1               110       2.5              60                  12100           6.25
> 4           1               110       7.5              30                  12100          56.25
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> Y = as.matrix(datas[4:ncol(data)])
> X =  model.matrix(delete.response(terms(model)), 

data, model$contrasts)
> XprimeX = t(X) %*% X
> XprimeXinv = solve(xprimex)
> hatB =  xprimexinv %*% t(X) %*% Y
> A = t(Y - X%*%hatB)%*% (Y-X%*%hatB)
> F = ncol(X)
> M = ncol(Y)
> N = nrow(Y)
> nu= N-(M+F)+1

All posterior parameters are now available
− Samples from the posterior of B can now be obtained by 

sampling B from a matrix-variate Normal, conditional to S being 
an inverse Wishart 

• A matrix-variate Norm... what ?
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3.2 Solution with non-informative priors

With non-informative priors, the posterior density of the parameters has been
well described by Geisser and Cornfield (1963), Geisser (1965) and Box and Tiao
(1973). In the same non-informative context, the predictive distribution of a new (or
several) response vector(s) has been described as a multivariate Student distribution
by Zellner and Chetty (1965), Johnson (1987) or Press (2003). In the Design Space
context, the benefits to use such a predictive distribution have already been shown
by Miró-Quesada et al. (2004) and Peterson (2004).

3.2.1 Prior distributions

The following joint non-informative prior distribution has been proposed by
Geisser and Cornfield (1963) to express ignorance about the parameters:

p (B, �) Ã |�|≠
1

2

(m+1) . (3.5)

Notice this assumes the independence of the parameters B and � a priori, which has
been advocated by Je�reys (1961) and Savage (1962) when little is known about both
parameters. This distribution has the advantage to be invariant under parameter
transformation.

3.2.2 Posterior distributions

Combining the prior distribution of Equation (3.5) with the likelihood using
Bayes’ theorem yields the joint posterior distribution p (B, � | data) Ã L (B, � | Y).
p (B, �). However, the joint posterior density is unpractical to work with so the
marginal and conditional distributions of the parameters have been derived as de-
scribed in the beginning of Section 2.2, page 31.

Conditional distribution of B given �

The conditional posterior distribution of B given � is expressed as the following
matrix-variate Normal distribution (see Appendix D.4 for the distribution defini-
tion):

B | �, data ≥ N
p◊m

1
B̂, �, (XÕX)≠12

, (3.6)
or, equivalently,

vec(B | �, data) ≥ N
pm

1
vec(B̂), � ¢ (XÕX)≠12

. (3.7)



Direct sampling from the marginal posterior

Thanks to, among other, Box, Tiao, Zellner, Geisser, etc.

Again, a matrix-variate distribution : the Student’s
Not available in R nor in any language or software of my knowledge... but let’s try 
that:
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2 , has an equivalent
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> rmatrixt2<- function(n=1,mean,Sigma,Omega,df){
array(t(rmvt(n=n,delta=c(mean),sigma=kronecker(Sigma,Omega),

df=df,type="shifted », method=″svd″)
),dim=c(nrow(mean),ncol(mean),n))

} 
> Bout2 = rmatrixt2(nsim,hatB,A/(nu),xprimexinv,nu)

> plot(density(Bout[1,1,]))
> lines(density(na.omit(Bout2[1,1,])),col="red")



Multivariate prediction

To obtain a predictive distribution, one needs to solve:

This may take several pages of mathematical scribbles... but for the linear (fixed) 
case, the solution exists !
− Predicting the multivariate response at condition     yields:

− What is great is that everything is already computed ! But care must be taken in the 
parameter definition of the t (scale vs. covariance)
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Still for implementation purpose, as the inverse-Wishart distribution is sometimes
unavailable, one can use the following equivalence:

� | data ≥ W ≠1
1 (A, ‹) … �≠1 | data ≥ W1(A≠1, ‹), (3.11)

A more detailed presentation of the Wishart and inverse-Wishart distributions is
available in Appendix D.1 and D.2.

It is then possible to draw samples from the joint posterior distribution of the
parameters using Equations (3.9), (3.10) or (3.11) followed by (3.6). When analysing
the regression e�ects, Equation (3.8) provides an easier way to obtain samples or
statistics from B | data.

3.2.3 Predictive distribution of a new response vector

A new response vector ỹ at one new point x̃ included in the experimental domain
is obtained from the predictive distribution, defined as,

p (ỹ | x̃, data) =
⁄

�

⁄

B

p (ỹ | x̃, B, �) .p (B, � | data) .dB.d� (3.12)

In the particular case of standard multivariate regression, this can be solved
and the predictive distribution of ỹ | x̃ is identified as a multivariate Student’s
distribution (Press, 1972; Kibria, 2006):

ỹ | x̃, data ≥ T
m

1
x̃B̂,

1
1 + x̃Õ(XÕX)≠1x̃

2
A, ‹

2
, (3.13)

where
1
1 + x̃Õ(XÕX)≠1x̃

2
A/‹ is the estimated scale or spread matrix of the multi-

variate distribution, with ‹ degrees of freedom (‹ > 0). For more information about
the multivariate Student’s distribution, refer to Appendix D.5.

3.3 Solution with informative priors

There is little literature existing on the use of informative prior distribution in
multivariate regression problem. Concerning univariate multiple linear regression,
Marriott and Spencer (2001) have shown the methodology to derive the posterior
distribution of the parameters and the predictive distribution of a new responses.
They used conjugate informative priors and illustrated the simplicity of updating
prior information. In this section, only the solutions are presented. Detailed deriva-
tions can be found in Appendix A.
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A new response vector ỹ at one new point x̃ included in the experimental domain
is obtained from the predictive distribution, defined as,
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ỹ | x̃, data ≥ T
m

1
x̃B̂,

1
1 + x̃Õ(XÕX)≠1x̃

2
A, ‹

2
, (3.13)

where
1
1 + x̃Õ(XÕX)≠1x̃

2
A/‹ is the estimated scale or spread matrix of the multi-

variate distribution, with ‹ degrees of freedom (‹ > 0). For more information about
the multivariate Student’s distribution, refer to Appendix D.5.

3.3 Solution with informative priors

There is little literature existing on the use of informative prior distribution in
multivariate regression problem. Concerning univariate multiple linear regression,
Marriott and Spencer (2001) have shown the methodology to derive the posterior
distribution of the parameters and the predictive distribution of a new responses.
They used conjugate informative priors and illustrated the simplicity of updating
prior information. In this section, only the solutions are presented. Detailed deriva-
tions can be found in Appendix A.

3. Bayesian standard multivariate regression 41

Still for implementation purpose, as the inverse-Wishart distribution is sometimes
unavailable, one can use the following equivalence:

� | data ≥ W ≠1
1 (A, ‹) … �≠1 | data ≥ W1(A≠1, ‹), (3.11)

A more detailed presentation of the Wishart and inverse-Wishart distributions is
available in Appendix D.1 and D.2.

It is then possible to draw samples from the joint posterior distribution of the
parameters using Equations (3.9), (3.10) or (3.11) followed by (3.6). When analysing
the regression e�ects, Equation (3.8) provides an easier way to obtain samples or
statistics from B | data.

3.2.3 Predictive distribution of a new response vector
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ỹ | x̃, data ≥ T
m

1
x̃B̂,

1
1 + x̃Õ(XÕX)≠1x̃

2
A, ‹

2
, (3.13)

where
1
1 + x̃Õ(XÕX)≠1x̃

2
A/‹ is the estimated scale or spread matrix of the multi-

variate distribution, with ‹ degrees of freedom (‹ > 0). For more information about
the multivariate Student’s distribution, refer to Appendix D.5.

3.3 Solution with informative priors

There is little literature existing on the use of informative prior distribution in
multivariate regression problem. Concerning univariate multiple linear regression,
Marriott and Spencer (2001) have shown the methodology to derive the posterior
distribution of the parameters and the predictive distribution of a new responses.
They used conjugate informative priors and illustrated the simplicity of updating
prior information. In this section, only the solutions are presented. Detailed deriva-
tions can be found in Appendix A.

> C_1 =  c(1  + x0 %*% xprimexinv %*% t(x0))
> varY = A/(nu) 
> postmean = x0 %*% hatB
> ysim = rmvt(n=nsim,delta=postmux0,C_1*varY,df=nu) #nsim = 2000



Original scale

Monte-Carlo simulations allow simply dealing with response transformations by 
propagating the uncertainty

> head(ysim)
yield      tapped     moisture      bulk    fraction 

[1,] -0.5975110 -0.75475915 -0.903692200 -0.9420145 -2.8076583
[2,] -2.8643233 -0.78628798 -1.472805905 -1.0787624 -7.3316669
[3,] -0.9052849 -0.09001934 -0.008912572 -0.2713737  3.7640472
[4,] -0.4235003 -0.56467757 -0.411099144 -0.7308374  0.1136780
[5,]  0.1094017 -0.52959732 -0.363973128 -0.6825366 -0.7368115
[6,]  4.1056835 -0.58245258 -0.496938347 -0.6553363  4.3186270

> ysim3[,c(1,5)] =100 /(1+exp(-ysim[,c(1,5)])) #logit
> ysim3[,2:4] = exp(ysim[,2:4]) #log

> hausner = ysim[,2]/ysim[,4] #compute important CQAs from responses
> hausner[hausner<1] = NA       #manage constraints during prediction
> ...



Original scale

Now it is pretty simple to obtain mean responses or prediction intervals

− Notice the mean is not especially relevant for non-Normal variables
− HPD intervals might be preferred over quantiles

> meanysim = apply(ysim,2,mean)
> beta= 0.95
> quantilemean =  apply(ysim,c(2),quantile,probs=c((1-beta)/2,(1+beta)/2),names = F)

> library(MCMCpack)
> quantilemean =  apply(ysim,2,function(m) HPDinterval(as.mcmc(m),prob=beta))
> quantilehausner =  HPDinterval(as.mcmc(hausner),prob=beta)



Predictive risk-based results

Neither mean responses nor intervals indicates information about process capability
Here comes the specifications
− Assume we want to know the probability the yield is within the following specifications (NLT 70 to 

90%)

> res["yield>70"] = sum(ysim[,1]>70)/nsim
> res["yield>80"] = sum(ysim[,1]>80)/nsim
> res["yield>90"] = sum(ysim[,1]>90)/nsim



Predictive risk-based results

The beauty of MC simulations is to let the correlations/dependencies 
speak without effort
− e.g. below: check the five specifications jointly

> res[“Joint.Proba"] = sum( ysim[,1]>80 &     # Yield>80%
ysim[,3]<1  &     # Moisture<1%
ysim[,5]>50 &     # Inhalable fraction>60%
carr.idx <20  &    # ...
hausner <1.25, na.rm=TRUE)/nsim yield vs. hausner

carr vs. hausner
It is the MC estimate of the

posterior probability
P(CQAs∈ L)



48© PharmaLex

Example 1: a Spray-Dryer
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Spray-drying process

Spray-drying is intended to create a powder with small and controlled particle’s
size for pulmonary delivery of a drug substance
Several Critical Process Parameters (CPP) have an influence on several Critical
Quality Attributes (CQA)
− CPP: inlet temperature, spray flow-rate, feed rate

(other process parameters are kept constant)
− CQA: yield, moisture, inhalable fraction, flowability

Specifications on CQA defined as minimal 
satisfactory quality
− yield > 80% 
− moisture < 1%
− Inhalable fraction > 60%
− …

49



How to follow QbD ? Start with the end !

The process must provide, in its future use, quality outputs
− e.g. during routine

According to specifications derived from safety, efficacy, economical reasons
− Whatever future conditions of use, that are not always perfectly controlled
− Then, outputs should be not sensitive to minor changes

This is Quality by Design
− The way the process is developed leads to the product quality
− This quality and the associated risks are assessed
− Achieved using Design Space methodologies



Spray-drying process

• Design Space, Risk and ICH Q8
– ICH Q8 proposes to use the Design Space (DS) risk-based methodology to 

fulfil these objectives

Target : “Understand and gain knowledge about a process to find a parametric 
region of reliable robustness for future performance of this process”

àAssurance of quality
àAssessment of the risk not to achieve quality

– Eases all business decisions
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Computation

This implies to know the behavior of the CQAs in the future
− How they change when CPPs change
− How they are statistically distributed
− How they are dependent

Fortunately, solutions exist in the Bayesian statistical framework for 
every problem !

(See previous R codes)
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Spray-drying process

Risk-based design space: predicted P(CQAs∈ l)
NOT A RESPONSE SURFACE !!

In the Design Space, there is merely 45% of chance to observe 
each CQA within specification, jointly
There is also 100-45% = 55% of risk not to observe the CQAs 
within specification (jointly) !
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From a probabilistic perspective, the addition of univariate
specifications in a multivariate analysis logically leads to a de-
crease in the joint predictive probability of acceptance [23]. At

optimal condition, the following decreasing probabilities illustrate
this situation.

P(Yield > 80%) = 0.71,
P(Yield > 80% and Moisture < 1%) = 0.56,
P(Yield > 80% and Moisture < 1% and Fraction > 60%) = 0.48,
P(Yield > 80% and Moisture < 1% and Fraction > 60% and Hausner
< 1.18) = 0.45.
The definition of multivariate specifications may be seen as a

remedy to this. In this context, desirability functions can be envis-
aged to aggregate the values of every individual predicted CQA into
a single value, namely the desirability index, representing the
desirability of the solution [24,25]. Monte-Carlo simulations can
be used to propagate the predictive uncertainty and the correla-
tions of the CQAs to the desirability index [26]. This index allows
for certain trade-offs between the CQAs. A slightly bad result for
one CQA could be compensated by a very satisfactory result for
another.

In this 5-CQAs study with univariate specifications, it may not
be surprising to observe the optimal joint estimated expected
probability of acceptance being about 0.45. Of course, finding a
DS with a higher minimal quality level and even stronger specifica-
tions would be an even more desirable situation.

Some estimates for each CQA are provided in Table 6, computed
from the distribution presented in Fig. 6. The mean values (Fig. 6,
dashed lines) or the medians (plain line) are the values expressing
the central tendency one can expect to observe. Additionally, the
75% and 95% Bayesian predictive intervals are also provided as
valuable information about the uncertainty of prediction.

For instance, the 75% predictive interval around the CQA Inhala-
ble fraction is very large ([49–85]%). Then, the model is poorly
informative regarding this CQA. A similar conclusion was reached
when looking at the marginal acceptance probability for this CQA
at the optimum, which was only 0.62.

4.2. Validation

The optimal solution has been carried out three times indepen-
dently on the same apparatus to observe how the process performs
within its 0.45 quality level DS. Table 7 summarizes the experi-
mental results. They reinforce the statistics observed during the
optimization process.

As expected, the process performs according to the predictions.
Most batches are within specifications. The inhalable fraction is
seen as acceptable (higher than 60%) except in the third batch
(red). However, on average (bold), the process corroborates the re-
sults of the joint expected probability, which was about 0.45. Obvi-
ously, a longer-term study would be necessary to plainly assess the
routine performance of the process.

Finally, Table 7 provides the indication of the variability ob-
served in the three independent batches. This variability is low
compared to the predictive uncertainty that was observed (see
Fig. 6 and Table 6). This indicates that the residuals predictive
uncertainty is not only due to the noise of the process. The poor
model fit is also a concern. A possible explanation is that more
complex interactions and higher order or non-linear effects are
present. Unfortunately, the central composite face-centered design
used in the experimental part is too light to detect such effects.

Fig. 5. Probability map that the CQAs satisfy the five specifications presented in
Table 3. Inner black lines define the DS for the minimal quality level p = 0.437 The
black point is the suboptimal condition xsub presented in Fig. 4. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 5
Design space of the process.

Critical process parameters DS range

Feed rate (ml/min) [4.2–4.8]
Spray flow rate (L/h) [1614–1744]
Inlet temperature (!C) [118–125]
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at the optimum, which was only 0.62.
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within its 0.45 quality level DS. Table 7 summarizes the experi-
mental results. They reinforce the statistics observed during the
optimization process.

As expected, the process performs according to the predictions.
Most batches are within specifications. The inhalable fraction is
seen as acceptable (higher than 60%) except in the third batch
(red). However, on average (bold), the process corroborates the re-
sults of the joint expected probability, which was about 0.45. Obvi-
ously, a longer-term study would be necessary to plainly assess the
routine performance of the process.

Finally, Table 7 provides the indication of the variability ob-
served in the three independent batches. This variability is low
compared to the predictive uncertainty that was observed (see
Fig. 6 and Table 6). This indicates that the residuals predictive
uncertainty is not only due to the noise of the process. The poor
model fit is also a concern. A possible explanation is that more
complex interactions and higher order or non-linear effects are
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used in the experimental part is too light to detect such effects.
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Validation
− Experiments have been repeated 3 times independently at optimal condition, i.e.

• Inlet Temperature: 123.75°C
• Spray Flow Rate: 1744 L/h
• Feed Rate: 4.69 ml/min

• Jointly, 2 out of the 3 runs within specification
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Indeed, the design allows only the estimation of the main and qua-
dratic effects and the principal interactions. This underlines the
need to define more informative designs when little is known
about the process, even if the price that must be paid is the carry-
ing out of more experiments.

5. Conclusions

When setting up a QbD-compliant ICH Q8 design space for a
process such as spray-drying, the use of the mean response surface
optimization methodology is not recommended due to the inevita-
ble uncertainties and interactions that are encountered. Accord-
ingly, the data gathered through a well-designed experimental
plan have been analyzed using a risk-based Bayesian predictive ap-
proach allowing the uncertainties and interactions to be integrated
into a multivariate statistical model.

These variabilities result in a minimal quality level that has
been kept relatively low in order to be able to define a design
space, i.e., the guarantee of jointly observing the critical quality
attributes within their acceptance limits is low. Even with this sit-
uation, these guarantees are quantified along with the risks of not
observing such quality, jointly or marginally. The specifications
have been designed such as to provide a minimal satisfying quality
for whole process. In this way, the quality of the resulting product

is built in by the design and controlled setup of the spray-drying
equipment.

Validation of the optimal condition within the design space has
been carried out, and these experiments provided a product com-
pliant with the predicted quality. To better assess how the guaran-
tees of quality prediction perform, one would consider analyzing
longer-term process data.

In addition, the validation experiments carried out indepen-
dently provided supplementary information concerning the statis-
tical model. Indeed, the good repeatability of the process seems to
indicate that the causes of the poor model fit were not solely due to
the noise present in the data. Instead, more complex interactions
or non-linearity of the responses can be present. In cases where
nothing or little is known about a specific process, defining a more
informative though labor-intensive design of experiments should
be envisaged.

Finally, the definition of a low guarantee design space could be
seen as the very first step toward a quality by design methodology.
The results presented are of great interest for the spray-drying
manufacturers and experimenters in order to improve quality.
For instance, the causes of variation could be identified, such as
poorly controlled factors. Furthermore, the effect of the key process
parameters that have been kept constant during this study could
be analyzed in a more detailed way through a new experimental
plan.
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Table 6
Statistics on the CQAs at the optimal input condition.

CQA Lower
95%

Lower
75%

Median Mean Upper
75%

Upper
95%

Yield
(%)

42 75 88 81 94 !100

Moisture content
(%)

0.26 0.57 0.71 0.76 0.89 1.31

Inhalable
fraction (%)

17 49 70 65 85 100

Compressibility
index

0.4 6.2 8.8 9 11.5 16.1

Hausner ratio 1 1.07 1.09 1.1 1.13 1.19

Table 7
Results of the validation experiments.

Batches Yield
(%)

Moisture
content (%)

Inhalable
fraction (%)

Compressibility
index

Hausner
ratio

1 88 <0.2 63 11.6 1.13
2 89 <0.2 62 12 1.14
3 88 <0.2 59 11.5 1.13
Mean 88.7 <0.2 61.18 11.76 1.13
Standard

deviation
0.61 NA 1.82 0.22 0.01
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• Post-analysis (« How they are statistically distributed »)
− Marginal predictive densities of the CQAs
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Indeed, the design allows only the estimation of the main and qua-
dratic effects and the principal interactions. This underlines the
need to define more informative designs when little is known
about the process, even if the price that must be paid is the carry-
ing out of more experiments.

5. Conclusions

When setting up a QbD-compliant ICH Q8 design space for a
process such as spray-drying, the use of the mean response surface
optimization methodology is not recommended due to the inevita-
ble uncertainties and interactions that are encountered. Accord-
ingly, the data gathered through a well-designed experimental
plan have been analyzed using a risk-based Bayesian predictive ap-
proach allowing the uncertainties and interactions to be integrated
into a multivariate statistical model.

These variabilities result in a minimal quality level that has
been kept relatively low in order to be able to define a design
space, i.e., the guarantee of jointly observing the critical quality
attributes within their acceptance limits is low. Even with this sit-
uation, these guarantees are quantified along with the risks of not
observing such quality, jointly or marginally. The specifications
have been designed such as to provide a minimal satisfying quality
for whole process. In this way, the quality of the resulting product

is built in by the design and controlled setup of the spray-drying
equipment.

Validation of the optimal condition within the design space has
been carried out, and these experiments provided a product com-
pliant with the predicted quality. To better assess how the guaran-
tees of quality prediction perform, one would consider analyzing
longer-term process data.

In addition, the validation experiments carried out indepen-
dently provided supplementary information concerning the statis-
tical model. Indeed, the good repeatability of the process seems to
indicate that the causes of the poor model fit were not solely due to
the noise present in the data. Instead, more complex interactions
or non-linearity of the responses can be present. In cases where
nothing or little is known about a specific process, defining a more
informative though labor-intensive design of experiments should
be envisaged.

Finally, the definition of a low guarantee design space could be
seen as the very first step toward a quality by design methodology.
The results presented are of great interest for the spray-drying
manufacturers and experimenters in order to improve quality.
For instance, the causes of variation could be identified, such as
poorly controlled factors. Furthermore, the effect of the key process
parameters that have been kept constant during this study could
be analyzed in a more detailed way through a new experimental
plan.
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Table 7
Results of the validation experiments.

Batches Yield
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Hausner
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1 88 <0.2 63 11.6 1.13
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Compared with validation SD, 
these uncertainties seems huge

Poor model fit ! 
Need to increase knowledge !

Predictive uncertainty = 
data uncertainty + model uncertainty
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Indeed, the design allows only the estimation of the main and qua-
dratic effects and the principal interactions. This underlines the
need to define more informative designs when little is known
about the process, even if the price that must be paid is the carry-
ing out of more experiments.

5. Conclusions

When setting up a QbD-compliant ICH Q8 design space for a
process such as spray-drying, the use of the mean response surface
optimization methodology is not recommended due to the inevita-
ble uncertainties and interactions that are encountered. Accord-
ingly, the data gathered through a well-designed experimental
plan have been analyzed using a risk-based Bayesian predictive ap-
proach allowing the uncertainties and interactions to be integrated
into a multivariate statistical model.

These variabilities result in a minimal quality level that has
been kept relatively low in order to be able to define a design
space, i.e., the guarantee of jointly observing the critical quality
attributes within their acceptance limits is low. Even with this sit-
uation, these guarantees are quantified along with the risks of not
observing such quality, jointly or marginally. The specifications
have been designed such as to provide a minimal satisfying quality
for whole process. In this way, the quality of the resulting product

is built in by the design and controlled setup of the spray-drying
equipment.

Validation of the optimal condition within the design space has
been carried out, and these experiments provided a product com-
pliant with the predicted quality. To better assess how the guaran-
tees of quality prediction perform, one would consider analyzing
longer-term process data.

In addition, the validation experiments carried out indepen-
dently provided supplementary information concerning the statis-
tical model. Indeed, the good repeatability of the process seems to
indicate that the causes of the poor model fit were not solely due to
the noise present in the data. Instead, more complex interactions
or non-linearity of the responses can be present. In cases where
nothing or little is known about a specific process, defining a more
informative though labor-intensive design of experiments should
be envisaged.

Finally, the definition of a low guarantee design space could be
seen as the very first step toward a quality by design methodology.
The results presented are of great interest for the spray-drying
manufacturers and experimenters in order to improve quality.
For instance, the causes of variation could be identified, such as
poorly controlled factors. Furthermore, the effect of the key process
parameters that have been kept constant during this study could
be analyzed in a more detailed way through a new experimental
plan.
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Remember the danger taking only into
account mean responses !

So critical when making DoE, as the
minimal number of experiments is
searched...

...while often, poor knowledge
on factor effects misleads the choice
of the design type !
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Spray-drying process

Conclusion
− Effective Design Space is the ultimate tool to optimize a process or a 

method while concurrently assessed its robustness
• To provide guarantee that future runs will be on specifications

− Even in presence of poor model fit…
• Here, due to a poorly designed set of experiments

− … it allows providing risk-based results
• But guarantee is kept low (45%)
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Gain

What are the benefits for industry ?
− Classical benefits due to DOE

• The time to run experiments before obtaining results is controlled
• This time is generally reduced in comparison to “handmade” optimization. Costs are 

reduced as well
− Benefits due to risk-based Design Space

• Guarantee and risk to be on specification are controlled
• Process/method knowledge leads to quality product and robustness
• Robustness generally eases transfer between manufacturing sites, for instance
• Better quality products also allows reducing costs

- Less batches out-of-specification
- Improvement of process reliability
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Example 2: a Pharmaceutical Formulation

Acknowledgment: Renske Hesselink, Xavier Lories



Context

Formulation Stability study to optimize the shelf-life, stress, and accelarated stability of a 
vaccine

Potency (log IU/mL), API concentration, aggregation, and visual appearance are evaluated 
with potency assays, QPCR, and other analytical assays, at t0 and tlt using 3 replicates
Several classical stress conditions are assessed 
− classical storage (1 year)
− 10x freeze-thaw + agitation
− accelerated stability (1 month at 25°C)

Objective: Find stable formulation ranges out of 8 identified formulation factors X1...X8
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Remain stable under challenging conditions



62

Vaccine formulation development

Therefore, a formulation is developed that 
ensures:

Efficacy
Physical, chemical and biological 
stability
Easy administration procedure
Optimal release, delivery and 
presentation of the molecule at the 
target site 
Manufacturability
Low cost of goods
Minimum side effects
Ideally without cold chain



5°C 5°C

25°C 35°C
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Why formulation robustness?

Sources of variability
Errors in buffer 
preparation
Variability in raw 
materials
Adsorption or 
retention of excipients 
during manufacturing 
process
pH changes
Evaporation
Excipient degradation 2 years stable at 2-8°C

?
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Results

Thermal stress has most impact on 
potency
Still, all formulations within 
specification after 2 year at 5°C, 
right?
No: after thermal stress, many 
formulations at high titer were < 
LLOQ and could not be measured

API



Critical quality attributes and specifications

Responses (each modeling one critical quality attributes) must lie within pre-defined 
specifications

Difficulty: the responses are not the critical quality attributes, but their kinetics of 
degradation 



Problem formalization

Critical Quality Attributes
− E.g.: difference of potency d0-lt : Y
− Format : a reportable result is the mean of three replicates 

Specifications
− reportable results of d0-lt > -0.3 IU/mL

Factors
− 8 formulations factors have been identified as Critical Process Parameters (CPP)

− An experimental design comprising 20 experiments has been conducted for every stress condition

pH Surfactant Cryoprotectant Salt Buffer API Anti-oxydant …



Designed experiments 

Over the 8 factors, a 20 experiments fractional factorial design with resolution IV

Not a “screening” design, but a “robustness” design
− Interested in predictions and (less) in parameters

Factor ranges chosen as normal variation around a target value
Is all the experimental domain providing a satisfactory stability ?
Problem: can you trust (mean) predictions of such a design ?
− Hint: No !
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Which model to select?

Statistics does not provide clarity… use 
scientific rationale
− All main effects
− Quadratic effect for titer à not perfect but 

better than linear
Optional 2FI:
− Interactions for pH × API and surfactant × API
− Because degradation / aggregation at high 

API concentration is likely influenced by 
charge (pH) and surfactant concentration

API à
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Predictive Bayesian Model

Individual predictions will be drawn and the reportable results will be derived using 
simulations
Take a lot of time to adjust your model
− All your decisions are based upon it !
− “Bad” model leads to very high predictive uncertainty
− Take care not to overfit your data

A multiple regression is adjusted
− Will the attribute(s) be well explained by a (Normal) linear model ?
− Do you need combination of variables, to transform them ?
− Y = Xb + e

− A little bit trickier than previously, as missing data are common (not at random, but <LOQ)
• Uses a regularized horsehoe prior multivariate regression with censored data imputation



Design Space computation

One simulation for one factor setting
− From the predictive distribution, sample individual response predictions (reportable results)
− compare to specification

From many n* simulations
− Compute the MC estimate of the posterior probability of success

For a grid over the factor setting
− Draw maps of the posterior probabilities P(success)
− Identify Design Space:

For all the CQA jointly:
− Use the joint distribution to account for correlations

p(ỹ | y) =

Z

✓
p(ỹ | ✓) p(✓ | y) d✓ (1)

Design Space = {˜x ⇧ ⇤ | P(

˜

y ⇧ ⇤ | ˜x, data) ⇤ ⇥} (2)
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Design Space representation: DoE considerations

Unfortunately, not possible to explore every factor setting
− DoE to analyze only the Critical Process Parameters

Obviously, the analyst often believes that a lot of factors will impact his/her quality... and 
might be right about it !

Computationally, there is a problem to represent high-dimensional spaces of factors
− Assume we want to explore a grid made from 10 points per factor...
− 8 factors.......10^8 conditions to explore !

Parallelization, computer clusters, etc., are of no help in this case



Design Space representation: curse of dimensionality 

A possibility is to explore the experimental domain by drawing randomly from a multivariate 
uniform distribution covering the space of factors (space-filling design for computer 
simulations)
− Ex : draw of  1000 and 400  different factor settings

On each point, compute the (posterior) probability of success
Then, create bivariate pair-plots of the factors
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Viewing the results: projections

Predictions are made for factor setting in the computer simulation, for the probabilities 
of success to meet the specifications
The 8-dimensional experimental space is projected as pair plots / scatter plot matrix
Each simpler pairs plot is a view of the total number of (projected) simulations
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Determining the design space

Find a subspace of the experimental domain where P(success is sufficient (~blue))
Balance between highest P(success), and what is feasible in process

Definition of 
Normal 

Operating 
Ranges 

within Design 
Space,

where stability
is guaranteed



Conclusions

Design Space is a tool build over DoE
− The advantages of DoE are kept...
− ...while fully taking into account all uncertainties and dependencies to make sure the decision and 

the associated risks are controlled
From the 8 process parameters, most of them were found “not so critical” and the risk-
based optimization over only some of them allowed to improve and control the drug 
formulation to obtain satisfying stability given pre-defined specifications

Pairs plots/scatterplot matrix with space filling designs can help when dimensionality is too 
high
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Conclusion



Conclusions

Use of Design Space methodologies at early stage of development allows 
− characterizing the chances of success based on a strong rationale as designed experiments are 

made
− determining robust optimal factor ranges allowing easier post-approval changes of formulation 

• “working within Design Space is not considered as a change” (Q8)

DS is not DoE
DS is not the mean, it is the probability of individual success !
Don’t limit yourself to response surfaces
− The data to compute Design Spaces and predict chances of success is already there !
− There is no guarantee that all will run smoothly with mean response surfaces !


