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The Situation 

“The industry is not ready to address statistical issues.  

Warning Letters have been issued due to poor statistics” 

 

Dr. Ajaz Hussain 

Former FDA Deputy Director 

European Compliance Academy Pharma Congress, Dusseldorf-Germany, March 2014 
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What We Offer You 

 We improve your decision-making with applied statistics 

 Accelerate development 

 Assess and reduce risk 

 Predict future outcomes 

 Optimize processes and reduce costs 

 We understand your business 

 Non-Clinical: from Research to Development to Manufacturing 

 Clinical Development: translating from pre-clinical up to Phase III design 

 Global perspective of product development and supply  for global impact in a 
regulated environment 

 We offer you integrated solutions  

 Consultancy / Software / Programming / Training 

 We provide you expertise from a team of 16 highly skilled people 
specialized in statistics 
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Product Lifecycle Services using a  
Holistic Perspective 
 

Applied Statistics and Modeling 

Pharma example 



3 

ARLENDA © 2014 

Active within the entire Healthcare Industry 

 Our clients belong to the entire 
Healthcare Industry: 

 Pharma 

 Biotech  

 Vaccine  

 Medical devices 

 Diagnostics  

 CRO/CMO 

 Hospitals 

 Scientific polices 

Arlenda Inc., 

New Jersey, USA 

Arlenda S.A. 

Belgium 
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Wide client base in the Healthcare Industry* 

 Consulting: we served 26 companies, including 4 in the Top 10 pharma** 

 Software: 42 companies rely on our software, including large pharmas  
(2 out of Top 10**), small pharmas, CRO/CMO, hospitals, medical 
devices/diagnostics and scientific polices 

* 2013 activity  

** 2012 ranking 

Arlenda Inc., 

New Jersey, USA 

Arlenda S.A. 

Belgium 

Our clients 

Arlenda 
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Integrated Platform of Expertise 

Support in Statistics 

Clinical 

- Modeling & Simulation 

- PKPD 

- From protocol development 
to statistical reporting 

- Applied Model based on drug 
development 

- Biomarker qualification 

- Clinical trial 
optimization/prediction 

- Adaptive and optimal designs  

- EDC 

 

Non-Clinical 

- Quality by Design and 
Design Space for processes 
and methods 

- Statistics for (Bio)Analytical 
methods 

- Biomarker validation  

- Stability studies 

- Quality Control Statistics 

- Signal processing 

 

Software 

 

 

Compliant  (ICH-FDA) 

Validated according to 
21CRFpart11 – GAMP5 

SAS based computation 

Web interface (SaaS): No 
installation/  
No maintenance 

Focused on: 

- Method Validation 

- Method Transfer 

- Stability (Shelf-Life) 

 

Training 

 

 

- Bayesian statistics 

- Adaptive Designs 

- Statistical prog. (R, 
SAS, JMP,…) 

- Design of Experiments 

- QBD and Design Space 

-Life-cycle of (bio) 
analytical methods. 

- Stability studies 
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Support in Non-Clinical applications 

Discovery & preclinical 

 Design and validation of non-clinical 
assays 

 Design and validation of Biomarkers 

 Design and analyses of animal 
models 

 Multi-criteria decision making in 
discovery 

 Advanced signal processing 

 Analyses of spectral data (NIR, 
Raman, NMR, EEG, Chrom…) 

 

 

 

 

 

 

CMC and Supply 

 Quality by Design methodology 

 Design Space maximization 

 Design of Experiments 

 Lifecycle Process Validation 

 Regulatory interactions 

 Quality Control Statistics 

 Programming support 

 Development of assays 

 Validation and transfer 

 Definition of specifications 

 Biomarker validation 

 Stability studies 
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Support in Clinical applications 

Pharmacometrics 
 

 NCA analyses 

 POP-PK/PD modeling 
using NONMEM and 
Monolix 

 Methodological support 

 Writing/contribution/rev
iew of pharmacometric 
analysis plan 

 Simulation and Prediction 

 NONMEM and WinBugs 
programming support 

 Adaptive (sampling) 
designs 

 Optimal Design 

 

 

 

 

Statistics 
 

 Protocol development 

 SAP development 

 Methodological support 

 Clinical trial simulation 

 Adaptive designs 

 Simulation, risk 
assessment 

 Set-up, Rule 
definition  

 Biomarker qualification 

 Analyses of Imaging data 

 

Programming 
 

 SAS Programming 

 SDTM  

 Production of TFLs for 
CSR 

 Full QC 

 Including NCA PK 
reporting 

 Preparing NONMEM files 

 Audited quality system 

 Reporting aligned with 
objectives of trial 

 Extra-miles to help 
decision making 

 

 

 

Qualified environment 
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Software ready-to-use 

 E-noval validates your physico-chemical 
methods (HPLC, UPLC,…) 

 

 Seelva validates your ligand binding assays 
method such as ELISA, RIA,… 

 

 Transval focuses on the transfer of analytical 
methods from one lab to another 

 

 Stab.e.lity evaluates your product shelf-life and 
defines the release limits. 

Software as a Service (SaaS) – 21CFR part 11 / GAMP5  
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17 Experts for Advanced, Fast and 
Quality Deliveries 

Services Scientific 
Programming 

Data Management 

 

 
Open position 

Cédric Dubourg 

Jean-Yves Celis 

Quality & 
Operations 

 

Benoît Verjans, PhD 

CEO 

 

 

Gaelle Martin, PharmD, PhD 

Mark Denham, Ir 

 

 

Statistics 

 
Tara Scherder, MSc 

Kicab Castaneda-Mendez,MSc 

Bruno Boulanger, PhD 

Eric Rozet, Ir, PhD 

Fabrice Nollevaux, MSc 

Perceval Sondag, MSc 

Open Position 

 

 
Réjane Rousseau, PhD 

Pierre Lebrun, PhD 

Laurent Natalis, PhD 

Jean-François Michiels, PhD 

Mikael Le Bouter, MSc 

Marco Bunda 

Open Position 
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Expertise in Arlenda 

 17 highly specialized people with various profiles including 8 PhDs in 
Statistics, Biology, Pharmacy and Chemistry  

 Cumulating 140+ years experience in healthcare research, 
development, manufacturing and supply 

 100+ published papers in applied M&S and Statistics. 

 1 US Pharmacopeia Expert, 4 people in charge of statistic tuitions in 
various universities, COE Statistics 

 Recognition 

 4 Professors of Statistics and Design of Experiments, School of Pharmacy, Université de Liège 
and UC Louvain 

 (Co)Chair “Statistical Methodology In Non-Clinical R&D” workshop since 1998 

 Chair (& founder) of BAYES2010: Applied Bayesian Statistics in Pharmaceutical Sciences 

 USP Pharmacopeia, Expert 
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Conclusion 

Great opportunity to optimize your product development and 
manufacturing by leveraging statistics: 

 Reduce risks (compliance and business) by identifying and 
managing key factors and uncertainty 

 Optimize your design of experiments to accelerate development and 
problem resolution: maximize information from the minimal 
number of runs 

 Strengthen the robustness of your clinical trials 

 Feed discovery and development with reduced and quantified 
uncertainty 

 Integrate information from research, laboratory, development and 
supply  

 Increase knowledge, performance and reliability of your processes 
through lifecycle validation 

Bruno Boulanger 

bruno.boulanger@arlenda.com 

Presentation of ARLENDA 
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Why Bayesian?  

 A short QbD reminder 

 A Bayesian statistics introduction 

 Predictions, Probability of success and Decisions,  

 Integrate priors knowledge, data and uncertainty 

 Multivariate models and joint probability of success 

 Multivariate modeling and restricted DoE 

 Integrate the Process (X) uncertainty into predictions  

 Derive control strategy for processes and methods 

 Predictions, tolerance interval and uncertainty of measurements 

 Software 
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Quality by Design overview 

 Quality Target Product Profile (QTPP) 
 

 Determine critical quality attributes (CQAs) and Specifications 
 

 perform risk assessment 
 

 Develop a design space 
 

 Design and implement a control strategy: SPC 
 

 Manage product lifecycle, including continual improvement: 
Transfer 

CQA’s

Product Profile

Risk Assessments

Design Space

Control Strategy

Continual 

Improvement

Prove the objectives will be met surely in the future  

and continuously improve 
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Regulatory Framework 

 ICH Q8: Design Space (DS): 

 

 "the multidimensional combination and interaction of 

input variables and process parameters that have been 

demonstrated to provide assurance of quality" 

 "working within the DS is not considered as a change" 

 "Understand and gain knowledge about a process to find 

a parametric region of reliable robustness for future 

performance of this process" 

17 
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Design Space (DS) 

"the multidimensional combination 

and interaction of input variables 

and process parameters that have 

been demonstrated to provide 

assurance of quality." R
e

s
p

o
n

s
e

 

Factor 

Spec ? 

prediction 
95% Prediction Interval 

Experimental 

domain 

 DS is a sub-region of the 

experimental domain where the 

objectives are met with a defined 

minimal probability. 
DS 
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Design Space graphically 

 Design Space picture ()  

  min0 }
~

{|   dataYPxDS

X 

{x0} 
Specs 

Y 

Predictive 
Model f 

f{x0} 

Input Variables 

CPP 

Assurance 
Predictions 

Quality 
CQAs and Specifications 

ARLENDA © 2014 

BAYESIAN STATISTICS 
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Objective of the Introduction 

 Concepts 

To present the main Bayesian concepts and some theoretical 

results 

 Applied 

To illustrate Bayesian methodology applied to a wide range of 

non-clinical pharmaceutical projects  

 Decision 

To show how to move from a « p-value »-based decision making 

process to a prediction-based one 

 Software 

To show the standard Bayesian softwares 

ARLENDA © 2014 

Reference used 

 « Bayesian Data Analysis », Gelman, Carlin, Stern & Rubin, 2004, CRC Press 

 « Fundamentals of Biostatistics» , Rosner 

 « Bayesian Modeling using WinBUGS », Ntzoufras, 2009, Wiley 

 « Bayesian Statistical Modeling », Congdon, 2006, Wiley  

 « Introduction to Bayesian Analysis », short course, Philippe Lambert, Institut 

des Sciences Humaines et Sociales, Université de Liège, 2009 

 « Explaining the Gibbs Sampler », Casella; George, The American Statistician, 

Vol. 46, No. 3. (Aug., 1992), pp. 167-174. 

 « Quality by Design for the optimization, validation and routine of the Ligand-

Binding assay », PhD Thesis , Pierre Lebrun, Arlenda & Université de Liège 
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Bayesian methods: 
General principles 
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Bayesian principle 

 Example: clinical trial to collect evidence of an unknown treatment 

effect 

 Frequentist analysis: 

• Point estimate and confidence intervals as summaries of treatment effect 

• Asks: what this trial tells us about the treatment effect 

 Bayesian analysis: 

• Before the trial: a priori opinion on the treatment effect 

• Asks: how should this trial change our opinion about the treatment effect? 

 

 Motivations for adopting Bayesian approach: 

 Natural and coherent way of thinking about science and learning 
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Bayesian principle 

Total 

Data 

Available 

Data 

Observed 

Data 
= + 

“LIKELIHOOD” 

data coming from the 

experiment  

“POSTERIOR DISTRIBUTION” 

combination of information collected before the experiment  

and what comes from the experiment data 

“PRIOR DISTRIBUTION”  

from previous studies, expert 

opinion, literature,… 
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Bayesian principle 

 

 

 

 

 

 

 Instead of having a point estimate (+/- standard deviation), we 
have a complete distribution for any parameter of interest 

 Frequentist     P(data | para) 

 Bayesian    P(performance | data) 

    This is the question in fact!! 
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 Four major concepts: 

 

1. Prior distribution 

2. Likelihood 

3. Posterior distribution 

4. Predictive distribution 

Bayesian principle 
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  Let’s consider that  is the parameter of interest (ex: treatment 

effect) 

 is treated as random variables (distribution) 

 

1. Prior distribution of parameter  : p() 

 Distribution of  before any data are observed 

 Reasonable opinion concerning the plausibility of different values of  

 Ideally based on all available evidence/knowledge (or belief) 

 Or deliberately select a non-informative prior  

 

Bayesian principle 

No such things as a point “estimate” 
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        Examples of parameters (priors) 
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Bayesian principle 
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        Examples of prior distributions 

Gamma distributions Beta distributions 

• Prior distribution -> Specify the domain of plausible values 

         -> Specify the weights given to these values 

• Prior distributions do not have to be a Normal (not only prior mean 

 and prior variance) 

• Prior distributions ≠ initial values. 

Bayesian principle 
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Bayesian principle 

2.    Likelihood:  

 Conditional probability of the data given : p(y| ) 

 Based solely on data 

 Usually, it’s not the question, even if most focuse on this!!  
 

3.     Posterior distribution:  

 Distribution of  after observed data have been taken into account: 

p(|y) 

 Final opinion about  

4.  Predictive distribution:  

 Given the model and the posterior distribution of its parameters, what 

are the plausible values for a future observation y*? 

p(y*| , y)  
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Bayesian principle 
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 Uncertainty is described in terms of probability : 

 

 

 

Bayesian principle 

-5 0 5 10 15

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

Theta

Posterior distribution

P(θ>5.5)=0.401 
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Posterior computation 

 In this example, the posterior distribution (Normal) belongs 

to the same family as the one of the prior distribution:  

 we speak about conjugate prior 

 

 Having conjugate prior is a convenient feature  

 but is not necessary. 

 

 In the majority of cases, the posterior distribution does 

not belong to an identified distribution. This is why we 

need a sampler such as Monte Carlo Marko Chains 

simulations. 
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Posterior computation 

 The posterior distribution contains everything that can be said 

about θ. 

 To summarize its information content: 

 Measures of location:posterior mode, posterior median, posterior mean 

 Measures of spread: posterior variance 

 Any probability on the values of θ or on a function of θ 

 Bayesian credibility interval: 

 Get the quantiles of the distribution (2.5% and 97.5%) 

 An interval that contains 95% of the posterior probability for θ, i.e. 

95% most plausible/credible values   

ARLENDA © 2014 

Posterior computation 


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Posterior computation 
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Posterior computation 

 In practice: quantile-based credible interval. However: some values of 

θ which are outside the quantile-based CI are better supported than 

some other values within the interval. 

 In special cases, the quantile-based is misleading. 

 

 

 

 

 

 

 

 If the posterior distribution is approximately symmetric, the HPD and 

quantile-based credible interval are very similar. 
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 What if we consider a non-informative prior: p()  1  ? 

 

 

 

 

 The value of  that maximizes the likelihood is:  

 The posterior mode= the maximum likelihood estimator 

 

 

 

 

 

p(q y)µ1* exp(-
1

2s 2
(yi -q )2 )
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n

Õ

p(q y)µexp(-
1

2s 2
(yi -q )2
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å )

y

If non-informative priors: 

 the posterior mode = the classical maximum                                       

  likelihood estimator 

Posterior computation 

: the likelihood 

ARLENDA © 2014 

 

 

Markov Chains Monte Carlo 
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MCMC simulations 

■ Simulations are needed. 

 

■ If we could generate n samples of  from the joint posterior 

distribution, then we could estimate E(f()|y) by the arithmetic 

mean: 
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MCMC simulations 

■ We need to be able to generate random samples from the 

posterior distribution. 
 

■ In some cases, the univariate densities belong to well-

known families-> easy to generate 
 

■ Otherwise, use other algorithms to sample from univariate 

or multivariate distribution: MCMC algorithm 
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MCMC simulations 

■ The samples are drawn sequentially so that each draw 

depends on the previous one, thus forming a Markov Chain. 

 

■ Eventually, the Markov chain converges to a stationary 

distribution that is the joint posterior distribution 

 

■ Algorithms for MCMC include: 

• Gibbs sampling 

• Metropolis-Hastings algorithm 

ARLENDA © 2014 

Gibbs sampling 

 If the full conditional posterior distribution of subsets of 

parameters can be identified, use Gibbs Sampling 

 Use this conditional distribution as proposal and accept every draws 

 

 

 

 

 Most algorithms, including proc MCMC or BUGS based samplers, have 

rules and algorithms to derive the full conditional posteriors to use Gibbs 

sampling 

 They choose automatically if e.g. Gibbs or Metropolis-Hasting have to be 

used 
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Gibbs sampling vizualized 
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P(x)

(b)
x1

x2

P(x1 | x
(t )
2 )

x (t )

(c)
x1

x2

P(x2 | x1)

(d)
x1

x2

x (t )

x (t+ 1)

x (t+ 2)

Figure 29.13. Gibbs sampling.
(a) The joint density P(x) from
which samples are required. (b)

Start ing from a state x ( t ) , x1 is
sampled from the condit ional

density P(x1 | x
( t )
2 ). (c) A sample

is then made from the condit ional

density P(x2 | x1). (d) A couple of
iterat ions of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the

cases of reject ion sampling and importance sampling, there is no catastrophic

dependence on the dimensionality N . Our computer wil l give useful answers

in a t ime shorter than the age of the universe. But it is bad news all the same,

because this quadrat ic dependence on the lengthscale-rat io may st ill force us

to make very lengthy simulat ions.

Fortunately, there are methods for suppressing random walks in Monte

Carlo simulat ions, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, reject ion sampling and the Metropolis

method using one-dimensional examples. Gibbs sampling, also known as the

heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-

t ribut ions over at least two dimensions. Gibbs sampling can be viewed as a

Metropolis method in which a sequence of proposal dist ribut ions Q are defined

in terms of the conditional dist ribut ions of the joint dist ribut ion P(x). It is

assumed that , whilst P(x) is too complex to draw samples from direct ly, its

condit ional dist ribut ions P(x i | { x j } j = i ) are tractable to work with. For many

graphical models (but not all) these one-dimensional condit ional dist ribut ions

are st raight forward to sample from. For example, if a Gaussian dist ribut ion

for some variables d has an unknown mean m, and the prior dist ribut ion of m

is Gaussian, then the condit ional dist ribut ion of m given d is also Gaussian.

Condit ional dist ribut ions that are not of standard form may st ill be sampled

from by adapt ive reject ion sampling if the condit ional dist ribut ion sat isfies

certain convexity propert ies (Gilks and Wild, 1992).

Gibbs sampling is illust rated for a case with two variables (x 1, x2) = x

in figure 29.13. On each iterat ion, we start from the current state x (t ) , and

x1 is sampled from the condit ional density P(x1 | x2), with x2 fixed to x
(t )
2 .

A sample x2 is then made from the condit ional density P(x2 | x1), using the

David J.C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003 
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MCMC with correlations 

 Sampling a multivariate distribution from a univariate proposal 

 

 

 

 

 

 

 Very slow exploration of the parameter space  

 especially if correlation is present 

 As sample j is very close to sample j-1  autocorrelation 

 Convergence can be very slow as well  

proposal 



24 

ARLENDA © 2014 

-4 -2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

x

MCMC simulations: Metropolis-Hasting 
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MCMC simulations 
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MCMC simulations 

 

 

 

 

 

 To find a good value for σ, we have to target a general 

acceptance rate of  

 0.2 if all the components of θ are updated simultaneously 

 0.4 when the components of θ are updated one at a time.   
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MCMC simulations 

  If the variance of the proposal distribution is too small, most of the proposals 
will be accepted and the parameter space will be slowly visited. 

 The chain is poorly mixing.   
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σ =0.1; acceptance rate=0.9. 
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MCMC simulations 

 If the variance of the proposal distribution is too large, most of the 
proposals will be rejected. 

 The chain stays at the same value for several iterations. 

 

t-1 
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σ =4; acceptance rate=0.1. 
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Software as of September 2014 

 WinBUGS  (The reference, not maintained since several years) 

 OpenBUGS 

 JAGS (Just Another Gibbs Sampler) 

 STAN (Hamiltonian Markov Chain, very fast, rapid convergence) 

 INLA (under construct) 

 SAS (> 9.3, Proc MCMC is robust and clear, Not as flexible as 

STAN) 

 Several dedicated R Packages 

 MCMCRegress 

 SUR (Seamingly Unrelated Regression) 

 ….. Many more 

 No more reason not using Bayesian statistics ;-) 
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PRIOR 

ARLENDA © 2014 

 A Criticism of Bayesian methods: no single correct prior distribution            

 conclusions drawn from the posterior distribution are suspect.  

         Note that the same applies in frequentist statistics, indirectly 
 

 Prior distributions are not arbitrarily determined by a single statistician, 

but are based on  

 the opinions of experts,  

 previously performed experiments 

 known properties of similar populations, etc.  

 Published research using Bayesian methods should consider a variety 

of prior distributions, thus allowing the reader to see the effects of 

different prior beliefs on the posterior distribution of a parameter: 

sensitivity analysis to be conducted before having seen the data. 

 But prior distributions should contain some evidence and knowledge. 

 

Prior elicitation 
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 However, the more data that are collected, the less influence 

the prior distribution has on the posterior distribution relative 

to the influence of the data. 

 Example: 

 Four different prior distributions are considered, chosen for their variety: 

uniform, right-skewed, bimodal, and mound-shaped.  
 

 For each prior distribution, the resulting posterior distributions are shown for 

three different data sets (sample sizes: 5, 25, 125) 
 

 As more data are collected, the posterior distribution converges to the same 

distribution regardless of the prior distribution. 

 

Prior elicitation 
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Prior elicitation 
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■ Relevance of prior knowledge: 

• If using published info, is there a risk of significant publication 

bias? 

• Are past studies really exchangeable with new ones? 

• Are the processes comparable? 

■ Is the prior acceptable for all the key stakeholders? 

• You may need to construct a prior by consensus 

• Building of a prior is always a great learning opportunity 

■ Frequentist also need a prior: 

• If there is no prior information, you don’t produce a batch 

• Prior is used as fixed value assumed to be true, without 

uncertainty 

Prior elicitation 
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1. Random vs fixed: 

• Bayesian: probability of parameters given observed data 

• Frequentist: probability of observed data given parameters 

 

2. Evidence used (in the analysis): 

• Bayesian: all available (relevant) information/knowledge 

• Frequentist: specific to experiment 

 

Comparison Bayesian-Frequentist 
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3. Inference 

• Bayesian : examine the probability of  given the data. 

• Frequentist : tests of significance are performed by supposing 

that a hypothesis is true (the null hypothesis) and then 

computing the probability of observing a statistic at least as 

extreme as the one actually observed during hypothetical 

future repeated trials. (This is the P-value). 

 

 (p-value=probability to observe something more 

disadvantageous for H0 than what we have observed, if H0 is 

true) 

Comparison Bayesian-Frequentist 

ARLENDA © 2014 

4. Intervals 

• Bayesian : credible interval : 95% most plausible/credible values  

 

• Frequentist : Confidence interval: “If we repeat the same 

experiment a large number of times, the confidence interval will 

contain the true value in 95% of the cases.” 

Comparison Bayesian-Frequentist 
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5. Design flexibility 

• Bayesian : May adapt study design as evidence 

accumulates 

− Sample size does NOT need to be pre-specified 

− Interim analysis may be conducted anytime and at any  

frequency 

• Frequentist: Interim analyses possible but restricted 

− Must be pre-specified 

− Number and timing affect the analyses 

Comparison Bayesian-Frequentist 

ARLENDA © 2014 

6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

■ A parallel study with two arms 

− Placebo 

− Treatment 

■ 10 subjects per treatment 

■ Endpoint:  

− Continuous parameter  

− Change from baseline 

− Treatment is expected to increase the change from baseline in 

absolute value 
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6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

Placebo Treatment 

ARLENDA © 2014 

6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

 Treat = 0 if placebo  =>   µ is the mean under placebo 

 Treat = 1 if treatment => (µ + α) is the mean under treatment 
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6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

Frequentist analysis : 

 Estimate    Std. Error    t value     Pr(>|t|)   

µ -2.3136       0.8655        -2.673      0.0155 * 

α           -1.6843      1.2240        -1.376      0.1857   

 

 The difference between treatment and placebo (α) is not significant. 

ARLENDA © 2014 

6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

Bayesian non-informative analysis : 

•Prior distributions are needed for µ, α and τ=1/σ². 

•Non-informative priors  
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τ ~Gamma(0.01,0.01) µ~N (0,var=10000) α ~N(-2,var=1000) 



34 

ARLENDA © 2014 

6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

    mean               sd                       2.5%                 25%            50%             75%            97.5%      

mu         -2.3237971      0.92896268       -4.19010000       -2.9147500      -2.3365    -1.714000    -0.5021525  

alpha     -1.6832251      1.33578129        -4.28912500       -2.5352500      -1.6655    -0.811775     0.8977400  

Bayesian non-informative analysis :  

ARLENDA © 2014 

6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

• 95% Credibility set : [-4.289125 ; 0.89774 ] 

• The value « 0 » is the in 95% most credible values for the treatment 

effect  

=> we can not claim that the treatment has an effect with 95% 

confidence. 

Bayesian non-informative analysis :  
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6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

Histogram of chainealpha2

chainealpha2
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0 • proba to have more effect than 

placebo = 0.90375 

• proba that the difference treatment vs 

placebo < -1 = 0.69975 

• proba that the difference treatment vs 

placebo < -2 = 0.394 

 Various questions can easily be 

answered once posterior available. 

Bayesian non-informative analysis :  
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6. Example: ANOVA 1. A common situation. Population and endpoint 

is well known and characterized 

Comparison Bayesian-Frequentist 

Bayesian informative analysis : 

•Let’s assume we have good information on the mean value under 

placebo and on the variance of the endpoint. 

  τ ~Gamma(2,20) µ~N(-2,var=0.2) α ~N(-2,var=100) 
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Mean precision=0.1 

Var(precision)=0.005 
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6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

Bayesian informative analysis :  

  mean               sd                2.5%               25%          50%           75%            97.5%      

mu       -2.0726165     0.40004086    -2.8520250    -2.341000     -2.0770     -1.8050      -1.297875 

alpha    -1.9356994    0.99649136    -3.9082000    -2.577250     -1.9190     -1.2800      -0.002068 

 

• 95% Credibility set: [ -3.9082 ; -0.0021] 

• The value 0 does not belong to the 95% credibility set 
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6. Example: ANOVA 1 

Comparison Bayesian-Frequentist 

Bayesian informative analysis :  

proba to have more effect than placebo = 0.97525 

proba that the difference treatment vs placebo <-1= 0.83225 

proba that the difference treatment vs placebo < -2= 0.466 
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Bayesian Method –  a sketch 

-∞ +∞ 

                       X 

                                           X 

                                    X 

                                         X   

                       X 

                                         X 

                                    X 

                                         X   

The capability of the process is a distribution  

that integrates the uncertainty 

Based on a point estimate of µ and σ  

 

Based on a distribution of µ and σ  

Posterior 

Distribution 

Prior  

Distribution 

new batches 

Frequentist Bayesian 
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Bayesian Method – A sketch 

-∞ +∞ 

                       X 

                                           X 

                                    X 

                                         X   

                       X 

                                         X 

                                    X 

                                         X   

The decision is based on the probability to be in the 

specifications, not point estimates of performance 

Based on a point estimates Based on a distribution 

Posterior 

Distribution 

Prior  

Distribution 

PPQ batches 

Frequentist Bayesian 
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There are defendable priors 

 Once decision is made to go perform an experiment, there is 
belief that justifies the investment. 

 Translate those scientific evidence and data based into priors 

 Priors is not about fixing the value, it contains the whole 
uncertainty about this belief. 

  This is the prior elicitation process. 

 Frequentist/Classical statistics ignore by definition those 
available information.   
Is it defendable to ignore available information? 
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Bayesian Predictive Distribution 

 The Bayesian theory provides a definition of the  

 Predictive Distribution of a new observation given past data. 
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Joint posterior Model 
Integrate over parameter distribution 

Marginal Model Conditional 
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How to make predictions 

Monte-Carlo Simulations 

where the “new observations” are 
drawn from distribution “centered” 
on estimated location and 
dispersion parameters (treated 
wrongly as “true values”). Some use 
CI limits instead. 

 

Predictions 

First, by drawing a mean and a 
variance from the posteriors and,  
second, drawing an observation from 
resulting distribution 
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3rd , repeat this operation 
a large number of time to 
obtain the predictive 
distribution 
 

Practically, how to make predictions 

1st , draw a mean and  
a variance from: 
 

 Posterior of mean µi 

 

 

 

 Posterior of Variance 
σ²i given mean drawn 

 

2nd , draw an observation 
from the resulting 
distribution 
Y~ Normal(µi, σ²i ) 

 
 

                          X 

                                X 

                  X 

                                    X   
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Probability being in specifications 
Tolerance intervals 

 Use the Predictive distribution to compute the probability to 
in specifications. 

 

 

 

 

 

 Bayesian statistics allows computing 
a probability instead of a Tolerance 
Interval only. 

  What’s the risk ? 

Predictive Probability to be in 

specifications 

                                        X 

                          X 

                                                 X 

                                  X   

                                        X 

                          X 

                                                 X 

                                  X   

[                             ] 

[-----------------------] 

Tolerance Interval 
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Value of predictive distributions 

 Can compute the P(OOS) and Risk 

 The predictive distributions integrates all sources of uncertainty, on 
data and on (performance) parameters. 

 This is not about the performance of the process (mean, variability) 

 The focus is the about the future individual batches / products and 
their probability to be within specifications  
 Assurance of quality 

 It is linked to the –future- capability of the process, assuming Process 
Parameters controlled. 

 When the space of process parameters is explored (Design Space) 
 It’s the Capability over the Design space or NOR. 
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Design Space of a process 

Take into account the uncertainty about future batches for 
defining a Design space.                     Think risk, instead of mean. 

        DS mean based                              DS Risk based. 

~50% chance not to achieve claimed quality !                 Favor Probability or risk plots instead    

ARLENDA © 2014 

The Flaw of Averages: 

Why We Underestimate Risk in the Face of Uncertainty 

 by Dr. Sam Savage 

Flaw 1: Focusing only on the mean  

(average) can put us at risk! 

Average depth of river is 3 feet. 

From John Peterson, 2012 
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Predictions, Design Space, NOR and control limits 

 The known or assumed control/uncertainty on CPPs 
can be integrated into Predictions: 

 

 

 This predictive distribution allows to compute the 
P(OOS) or Capability under realistic/industrial 
conditions. 

  The (HPD) credibility interval should be used a 
Control Limits to detect -with appropriate risks- any 
departure   
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Provide a distribution on CPP (NOR) 
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Control strategy 

 Raise appropriate out-of-control, alert, and reject at release  
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It allows to control the risks and 
keep the quality constant over 
time. 

You maintain your initial claim and 
monitor it with appropriate levels 
of risk.  

Release Routine 

LSL 
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Bayesian Multivariate modeling 

 Reality is multivariate. Several Attributes (CQA) must jointly fall within 
the specifications. 

 Bayesian modeling allows easily multivariate models, even in the 
presence of strong dependencies between the CQAs 

 When using reduced DoE, a problem of degrees of freedom can surge. 

  u = N – (M + F ) +1   (from a multivariate student) 
 M = number of CQAs , say 4 
 F= numbers of CPP, say 4 

 Using informative priors from previous experiments the d.f. can be 
maintained : u+ u0 

 Informative priors for examples: 
  on dependencies between CQAs (Wishart dist.) 
  on precision of measurement system  

ARLENDA © 2014 

OPTIMIZATION OF A MICRONIZER 
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Spray-drying process 

 Spray-drying is intended to create a powder with small and controlled 

particle’s size for pulmonary delivery of a drug substance 

 Several Critical Process Parameters (CPP) have an influence on 

several Critical Quality Attributes (CQA) 

 CPP: inlet temperature, spray flow-rate, feed rate 

 5 CQA: yield, moisture, inhalable fraction, Compressibility, 

flowability 

 Specifications on CQA defined as minimal  

    satisfactory quality 

 yield > 80%  

 moisture < 1% 

 Inhalable fraction > 60% 

 … 
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Spray-drying process 

 The process must provide, in its future use, quality outputs 

 e.g. during routine 

 According to specifications derived from safety, efficacy, economical 

reasons 

 Whatever future conditions of use, that are not always perfectly 

controlled 

 Then, outputs should be not sensitive to minor changes 

 This is Quality by Design 

 The way the process is developed leads to the product quality 

 This quality and the associated risks are assessed 

 Achieved using Design Space methodologies 

 



45 

ARLENDA © 2014 

Spray-drying process 

 Risk-based design space: predicted P(CQAs∈ l) 

 

 

 

 

 

 

 

 In the Design Space, there is 45% of chance to observe each CQA 

within specification, jointly 

 There is also 100-45% = 55% of risk not to observe the CQAs within 

specification (jointly) ! 
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Spray-drying process 

 Validation 

 Experiments have been repeated 3 times independently at 

optimal condition, i.e. 

Inlet Temperature: 123.75°C 

Spray Flow Rate: 1744 L/h 

Feed Rate: 4.69 ml/min 

 

 

 

 

 

Jointly, 2 out of the 3 runs within specification 
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Spray-drying process 

• Post-analysis (« How they are statistically distributed ») 

 Marginal predictive densities of the CQAs 

Inhalable fraction is predicted to be 

largely distributed 

Predictive uncertainty =  

data uncertainty + model 

uncertainty 

Model Uncertainty can be reduced  

with an appropriate DoE 

ARLENDA © 2014 

Benefits of Bayesian Approach 

 Capability is defined as the ability of a process to meet specification, that 
is, the probability of meeting specification 

         Bayesian provides a true prediction of future performance 

 Complicated hierarchy/ sampling plan not a problem  

 Between batch, sample within batch, within sample variation can be 
incorporated 

 Unbalanced sampling  

 Joint prediction of multiple CQA’s is possible 

 Uncertainty of parameters included, thus improving prediction and 
reducing risk 

 Not affected by non-centering within specification range 

 Systems approach to unit operations (simultaneous prediction) 
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AN ELISA EXAMPLE 

ARLENDA © 2014 

An example using a Bioassay (ELISA) 

• Objective:  to provide, in the future, accurate results, i.e. 
being into fit-for-purpose specifications. 

Critical Performance Parameters (CPP) have been identified, eg: 

•Amount Capture Antibody       [250-750] 

•Amount of Biotin                      [250-600] 

•Amount Enzyme                      [300-750] 

•Volume                                     [50-100] 

•Incubation Time                       [1-3] 

•NB Cleanings                                 [1-4] 

 A DoE with 16 experiments has been used analyzed to find 
optimal conditions 
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Calibration and Precision Profile  
of a ligand-binding assay 

Precision profile can be always computed 

ARLENDA © 2014 

How to decrease risks? Improve Precision? 

Change operating conditions (CPP)  to flatten the 
profile 
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Assay quality: risk-based approach 

 Design Space and Risk 

The range of concentrations where the method is intended to give accurate results 
in its future use 

  Using a precision profile 

Using a probability profile 

ARLENDA © 2014 

Assay quality: risk-based approach 

Optimizing conditions 

Depending on Assay CPP and Design Space, quality may vary 

Dosing range 
Dosing range 
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Design Space of Optimized assay 

Take into account the uncertainty about future run for defining a 
Design space.                            Think risk, instead of mean. 

        DS mean based                              DS Risk based. 

~50% chance not to achieve claimed quality !  

Bayesian Adaptive Sampling Time Design 
for non-linear model 
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Typical challenge: Pediatric PK trial 

 Phase I Single Dose study in children  

 Focus is on PK parameters, accuracy of estimates  

 to be used for predictions 

 dose/regimen optimization 

 A priori rather informative 

 numerous data in adults  

 experience in allometric scaling. 

 Kids are not small adults! 

  need to be robust against this potential issue 

 Ethics: maximum 3/4 samples per kid. 
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Adaptive “PK Sampling-Time” design 

The Strategy 

 An Adaptive Sampling-Time Design trial  

 guide the sampling-times in single-dose  or multiple dose studies 

 Given (updated) a priori information on parameters, a D-

optimal design for non-linear mixed effect model is derived at 

each interim. 

 NB: not a Bayesian D-optimal design, too computer intensive 

 A Bayesian hierarchical PK model has been applied to 

update information on the parameters. 
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The different Design scenarios 

1. 2 – 3 - 4 patients per cohort, maximum of 6 cohorts 

2. 3 – 4 - 5 sampling times D-optimal given prior information 

3. Bayesian Hierarchical PK model (1-cmpt, oral) with 

informative prior from adults and allometric scaling 

4. Posteriors on parameters is used to find the D-optimal 

design for the next cohort. 

5. Posteriors are used as priors for the Bayesian model at the 

next interim 

6. Trial could stop when accuracy on parameters satisfactory, 

but 12 patients is the stopping rule. 
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PK Sampling-Times Adaptive Design 

Recruitment & 
Measures 

Update of priors 

Bayesian PK-
model 

Decision 

Go/Stop 

Priors 
D-optimal 

Design 
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The PK model 

ARLENDA © 2014 

Bayesian adaptive sampling: after the 1st cohort 

T
ru

e
 

A
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ri
o

ri
 

PK Profile Log(V) 

Log(ka) Log(ke) 
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Adaptive Upper Time for D-optimal Design 

Given the (updated) a priori: 
- the predictive probability to be above the LLOQ (say 0.05) is computed as a function of time 
- the largest time such p(Concentration>LLOQ)>0.8 is the upper limit for D-optimality search. 
- D-optimality will provide “far” sampling times. 
- Need to minimize number of missing/censored values.  

ARLENDA © 2014 

PK Sampling-Times Adaptive Design 

Recruitment & 
Measures 

D-optimal 
Design 

Update of priors 

Bayesian PK-
model 

Decision 

Go/Stop 

Priors 
Upper time 

p(Ci>LOQ)>0.8 
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Sampling at the 2nd cohort 

PK Profile Log(V) 

Log(ka) Log(ke) 
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Sampling at 6th cohort 

PK Profile Log(V) 

Log(ka) Log(ke) 
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Fixed Design with correct a priori 

PK Profile Log(V) 

Log(ka) Log(ke) 
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Adaptive vs Fixed Designs 

Adaptive with 

wrong a priori 

Fixed, Correct a 

priori 

Fixed, Wrong a 

priori 

Log(ke) Log(ke) Log(ke) 

Log(V) Log(V) Log(V) 
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A Bayesian Design Space of 

Dissolution Profile and 

Membrane Coating Parameters 
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THE PETRI DISH EXAMPLE 

mailto:pierre@arlenda.com
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Petri Dish problem  

 Petri Dish project: review of results 

 Some thoughts coming from the project 

 Modeling of score vs modeling of values 

 How to aggregate scores: avoid making average 

 How to combine CQAs for one objective 

 Design Space, optimum and Sweet spot: 50% of success or more 

 Making prediction vs p-values 

 Using Bayesian models vs frequentist models 

 The value of a Priori  

 Next step 
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Study Aim 

 Optimization of two parameters of the drying process of Petri dishes: 

 X1 = [0.46 ; 1.34] 

 X2 = [7 ; 15] 

 Other factors: 

 Time: Ti (Production day), T0 (irradiation + 7 days), T1 (T0 + 1 week) and T3 
(T0 + 5 weeks) 

 « Lot »: random factor of 10 levels 

 CT: 0=not stressed, 1=stressed 

 Responses measured are condensations scores at: 

 bag: with 5 levels: 4 (liquid water) >3>2>1>0 (dry) 

 lid: with 5 levels: 4 (liquid water) >3>2>1>0 (dry)  

 agar: with 3 levels: 2 (liquid water) >1>0 (dry) 

 gutter: with 4 levels: 3 (liquid water) >2>1>0 (dry) 



59 

ARLENDA © 2014 

Modeling Score 
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Model 

 Let 𝑦𝑖  be an ordinal observed variable with a total of C mutually 
exclusive ordered categories whose distribution is driven by the 
latent variable: 

 

 𝜏𝑖 = 𝑥𝑖𝛽 + 𝑧𝑖𝛾 + 𝜀𝑖  where: 

  𝛽  vector of fixed effects, 

 𝛾 vector of random effects assumed independant and normally 
distributed 

 𝜀𝑖 is iid 𝑁 ∼ 0, 1   

 𝜏𝑔𝑢𝑡𝑡𝑒𝑟,𝑖 = 𝛽0 + β1 X1 2 + β2 X2 2 +𝛽3 X1 + 𝛽4X2 + 𝛽5X1 × X2 + 𝛽6𝑇𝑖𝑚𝑒 + 𝛽7𝐶𝑇 + 𝑏1Lot + 𝜀𝑖  

 𝜏𝑙𝑖𝑑,𝑖       = 𝛽0 + β1 X1 2 + β2 X2 2 +𝛽3 X1 + 𝛽4X2 + 𝛽5X1 × X2 + 𝛽6𝑡𝑖𝑚𝑒 + 𝛽7𝐶𝑇 + 𝑏1Lot + 𝜀𝑖  

 𝜏𝑎𝑔𝑎𝑟,𝑖   = 𝛽0 + β1 X1 2 + β2 X2 2 +𝛽3 X1 + 𝛽4X2 + 𝛽5X1 × X2 + 𝛽6𝑇𝑖𝑚𝑒 + 𝛽7𝐶𝑇 + 𝑏1Lot + 𝜀𝑖  

 𝜏𝑏𝑎𝑔,𝑖      = 𝛽0 + β1 X1 2 + β2 X2 2 +𝛽3 X1 + 𝛽4X2 + 𝛽5X1 × X2 + 𝛽6𝑡𝑖𝑚𝑒 + 𝛽7𝐶𝑇 + 𝜀𝑖  
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Model 

 Each category is delimited by C-1 thresholds  𝑡𝑗: 

  𝑡0= −∞, 𝑡𝐶 = +∞ and  𝑡1≤ 𝑡2 … ≤ 𝑡𝐶−1 

 

 𝑃(𝑦𝑖 = 𝑗 𝛽, 𝛾, 𝑡) = 𝑃  𝑡𝑗−1≤ 𝜏𝑖 ≤ 𝑡𝑗  𝛽, 𝛾, 𝑡 =

𝜙  𝑡𝑗− 𝑥𝑖𝛽 + 𝑧𝑖𝛾 − 𝜙  𝑡𝑗−1− 𝑥𝑖𝛽 + 𝑧𝑖𝛾  

 where 𝜙(. ) is the cdf of a standardized normal variate 

 

 Use of Bayes formula and MCMC sampling allows to obtain: 

  posterior distributions of 𝛽, 𝛾, 𝑡  

  predictive distributions of 𝑃(𝑦𝑖 = 𝑗 𝛽, 𝛾, 𝑡)  
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Results – Individual responses  
Condensation in lids:  95% probability maps 
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