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How to make
good models?

*select regions
epreprocessing
eremove outliers

-

Where are the peaks
for the additives?

Ask experts
and the
Genetic Algorithm
of Leardi

WHAT | GOT

* FTIR data of polymer films
(1873 wavelengths)

» Concentrations of 2 additives (no names)
- Additive B (42 + 28 samples)
- Additive C (109 + 65 samples)

* NO information about suggested regions




THE CHALLENGE

To verify if Genetic Algorithms could

find a model characterized by:

 good predictive ability
* “logical” regions

These spectra are not pretty
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peaks, leaving polymer bands saturated.

[N
I

1.5q

-
I

Q

The pathlength was optimized for small additive
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THE RESULTS  aqditive B

RMSEP (GA) 48

RMSEP (expert) 54

regions (GA), cm-1 3634-3616
3506-3485
1906-1884
1662-1645
1493-1487
644-623

regions (expert) 3600-3260

Additive C

47

48

1200-1175

895-885
864-839

899-829

121

Additive F

R

All other regions are related to polymer.

Additive form is dependent on catalyst health.
I Polymer peaks are also influenced by catalyst health, so it
makes sense that the model requires these peaks.
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Additive C | | i |

Experts know three peaks in 800-1200cm-1 represent various forms of
the additive. Experts didn't know which and how many regions to
include. GA selected one more than the experts ultimately selected.
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This is excitingl

» Variable Selection is a very important
step for developing a good
multivariate model.

 This tool provides an automated
approach when expertise is not
available or the variables are not
known (ex. Octane number).

OPTIMIZATION STRATEGIES

The “standard” approaches (experimental design, steepest ascent,
simplex...) work well with relatively simple problemes but fail
when the complexity of the problem is too high (e.g., trapped gn
local maxima)

When does a problem become “very complex”?

- High number of independent variables
- Very complex or irregular response surface
- Presence of discontinuities in the experimental domain

- Response to be optimised function of several “subresponses”




WHAT TO DO WITH A“VERY COMPLEX PROBLEM"?

The only way to be “sure” of finding the global maximum would Qe
a “grid search”. Problem: the number of measurements incregses
very fast as the number of variables increases

An alternative strategy:

- performing experiments at random points

- retaining the points giving a good response
- trying to improve the response by somehow using the obtaired
information (local search around the randomly selected point,|or
exploiting what the best points have in common).

GENETIC ALGORITHMS

Genetic Algorithms (GA) mimick the evolution of a speciex@aing to the
Darwinian theory (Survival of the fittest”).

The fitness to the environment is function of the geneticamial, (the result of an
experiment is function of the experimental conditions).
Genetic material —experimental conditions

The genetic material is defined by the genes (an experireodition is defined
by the values of the variables involved in the experiment).

Genes— variables

The information contained in each gene is defined by a seguehnitrogenated
bases; we can use the binary code to transform the value afablein a word
of variable length, written in bits (two-letter alphabetu@d 1).

Nitrogenated bases— bits

Each experimental condition, coded byaguence of 0’'s and 1sis treated as
the genome of an individual, whose “performance” is congides its “fithess”




CODING

How to code the following experimental condition?
- reaction temperature: 30°C

- reaction time: 20 minutes

- stirring: yes

- catalyst: type A (A and B possible catalysts)

0111101010010
(blanks have been added only to make genes evident)

- variables of different types can be dealt with at the same time:

quantitativevariables (time, temperaturej,alitativevariables
(type of catalyst) and variables of types/no(stirring)

- the number of bits for each gene can be very different

CODING
0111101010010
011110 = 30°C

This means that:
- therangeis between 0 and 63°C
- thedifference between two levaks 1°C

This coding is reasonable if:

- we are interested in studying the reactiorm 0 to 63°C

- the difference ofone degreds significant (the reaction at
25°C can be different from the reaction at 26°C)

- the temperature can be set with hescision of 1°C(for an
experiment to be performed at 25°C, | can actually set i
between 24.5°C and 25.5°C)




If the rangeof temperatures we are interested irfrism 25 to 60°C with an
interval of 5°C as a consequencesight levels describe completely our
variable, andhree bitsare enough:

000 = level 0 = 25°C
001 =level 1 = 30°C
010 = level 2 = 35°C
011 =level 3 =40°C
100 = level 4 = 45°C
101 =level 5 =50°C
110 = level 6 = 55°C
111 =level 7 = 60°C

If for the variable time we are interested in thenge 10-40minutes, with an
interval between levels ofwo minutes 16 levels and thereforéour bits will be
required

Final coding: 001 0101 1 {ne bitsand 512 possible combinations), instead
the originall3 bitsand 8192 combinations (search complexity reduced by arfa
of 16)

Operators of a classical GA:

Creation of the original population

Select-copy : simulates the fights for mating, in which the best
individuals have the highest probability of success, and th erefore of
spreading their genome

Cross-over : simulates the mating between two individuals,
producing two offsprings, whose genetic material is derive d from
that of the two parents

Mutation : as in nature, rarely occurring random phenomena,
producing random changes in the genetic material




Creation of the original population

The population size stays constant throughout the elaboration (th
number of individuals can be quite different, and usually is in the

range 20-500).

After having decided the population sizg, the genetic material of
the p individuals is randomly determined. This means that every

single bit of each chromosome is randomly set to O or 1.

If this chromosome corresponds to a possible experimental
condition (i.e., inside the experimental domain), its response is

evaluated.

Continuing with the previous example, let us simulate this step,

supposing that the population size is 10 individuals.

Chromosome Experimental conditions
001 1001 O 1 30°C, 28 min, no. B
0100100 11 35°C, I8 min, yes. B
000 101000 25°C, 30 min, no, A
100010111 45°C. 20 min, ves. B
1100001 10 55°C, 12 min, yes. A
O Irrol 35°C. 40 min, no, B
wrorrr 1 50°C, 24 min, ves. B
001 0010 10 30°C, 14 min, ves. A
100 1001 10 45°C, 28 min, yes. A
O0roorr 11 30°C, 16 min, ves, B

Yield
549
67.2
66.0
70.3
79.1
62.1
T1.3
834
89.6

50.7

e
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Reproduction

After having created the original population (or first generation
the individuals start “mating” and “producing offspring.”

Two basic concepts common to all the GAs:

- The probability of the best chromosomes (the ones giving th
best responses) of producing offspring is higher than that of tf
worst chromosomes

- The offspring originated by their “mating” are a recombination
of the parents.

First step: creating the population of the generati®d simply by
randomly copyingp times a chromosome of the generatign
taking into account the response of the individuals, giving the bq
ones a higher probability (e.g, =resp/ 2 resp).

Sort the population and compute the selection probability:

Chromosome Experimental conditions Yield Probability
100 1001 10 45°C, 28 min. yes, A 89.6 0.127
0Dl 001010 30°C, 14 min, yes, A 834 0.119
1100001 10 55°C, 12 min. yes. A 79.1 0.112
ororrr 1 50°C. 24 min. yes. B 71.3 0.101
1000101 11 45°C, 20 min, yes, B 70.3 0.100
Oloo01oo0 11 35°C, 18 min. yes. B 67.2 0.096
000 101000 25°C, 30 min. no. A 66.0 0.094
010111101 35°C, 40 min. no, B 62.1 0.088
001001111 30°C. 16 min. yes. B 59.7 0.085
001 100101 30°C, 28 min. no. B 549 0.078

Draw 10 random numbers between 0 and 1:
0.353 0.038 0.367 0.324 0.414 0.903 0.150 0.353 0.428 0

St

915
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Chromosome Experimental conditions Yield

100 1001 10 45°C, 28 min, yes, A 89.6
001001010 30°C, 14 min, yes, A 834
1100001 10 55°C, 12min, yes, A 79.1
1100001 10 55°C, 12min, yes, A 79.1
1100001 10 55°C, 12min, yes, A 79.1
101011111 50°C, 24 min, ves. B 71.3
101011111 50°C, 24 min, ves. B 71.3
101011111 50°C, 24 min, ves, B 713
0010011 11 30°C, 16 min. yes, B 59.7
001001111 30°C. 16 min. ves. B 59.7

The ten individuals are randomly paired in five pairs, arahfreach pair (the “parents”) two
new individuals (the “offspring”) will be obtained after arbssover,” by which the genes of
the parents will be shuffled. Let us suppose the pairs arB0,12-9, 5-8, 4—6 and 3-7. Let us

take into account the first one:

100 1001 10 45°C, 28 min. yes, A
0010011 11 30°C. 16 min, ves, B

For each gene a random number is drawn, determining to wiifsprimg the genes of the
parents will be assigned. Let us suppose that the values.284 fbr the first gene, 0.719
for the second one and 0.265 for the fourth one (the third srilkd same in both parents).

The two offspring will be:

100001110 45°C, 16 min, ves, A
001100111 30°C, 28 min, yes, B

Doing the same for all the pairs, the following population

obtained:
100001110 45°C, 16 min,
001100111 30°C, 28 min,
001001110 30°C, 16 min,
001001011 30°C, 14 min,
10011110 55°C, 24 min.
101000111 50°C, 12 min
101000110 50°C, 12 min
Lot 55°C, 24 min.
101011110 50°C, 24 min,
1100001 11 55°C, 12 min

Though different individuals have been obtained, by continuing
this way only already tested values of the variables would be us§
furthermore, in this case the third gene (stirring) has value 1 in
the population: therefore, an experimental condition without

stirring could never more occur.
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Mutations

The main difference between crossover and mutagitmat, while the crossover is applied
at gene level (it involves all the bits coding ttagiable), the mutation affects single bits.

If the bits affected by a mutation are bit number 4 of chrommos@® and bit number 3 of
chromosome 7, the “final” population for the second genenatill be:

100001110 45°C, 16 min, yes, A
001000111 30°C, 12 min. yes, B
001001110 30°C. 16 min, yes, A
001001011 30°C, 14 min, yes, B
OO 10 55°C, 24 min, yes, A
1010001 11 50°C, 12 min. yes, B
1000001 10 45°C, 12 nun, yes, A
oot el 55°C. 24 min, yes, B
101011110 50°C, 24 min, yes, A
1100001 11 55°C, 12 min, yes, B

New generations will be created until a stop criterion iss§iad, the most common of
which are: predefined number of generations, predefined bf elaboration, obtention
of a target response value.

VARIABLE SELECTION METHODS:

“UNIVARIATE” . select those variables that have the
greatest correlation with the response

“SEQUENTIAL” : select the best variable and then the
best pair formed by the first and second and so on in a
forward or backward progression. A more sophisticated
approach applies a look back from the progression to
reassess previous selections

‘MULTIVARIATE (PLS-ORIENTED)” : Interactive Variable
Selection, Uninformative Variable Elimination, Iterativ e
Predictor Weighting PLS, Interval PLS, ...

GENETIC ALGORITHMS
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AN EXAMPLE OF GA APPLIED TO FEATURE SELECTION

(for sake of simplicity, assume 10 variables)
chromosome 1: 0010011001 (model made by variables 3, 6, 7, 10)
chromosome 2: 1000110011 (model made by variables 1, 5, 6, 9, 10)

Cross-over : genes 1, 4, 6, 8 are swopped

offspring 1: 1010011001
offspring 2: 0000110011

Mutation : gene 2 of offspring 2 is mutated

offspring 1: 1010011001 (variables 1, 3, 6, 7, 10)
offspring 2: 0 100110011 (variables 2, 5, 6, 9, 10)

The main problems of "Classical GA”

- overfitting

- lack of reproducibility

When applied to spectral data sets
(as any other selection method)

- non "spectroscopically logical” selections
("dispersed” wavelengths rather than regions)

14



Modifications have been made to the standard GA
in order to:

*make it more suitable to the feature selection problem

sreduce the risk of overfitting

Further modifications have been made to make it
especially suitable for spectral data sets

Detailed description of the algorithm goes well beyond
the scope and the time of this talk

Data set APPLE JUICES:

» 367 German apple juices from three different
years (1999, 2000, 2001)

 Training set: 229 samples (1999, 2000)
 Validation set: 138 samples (2001)
» 7 responses

* FT-IR spectra (1054 wavelengths) by Wine
Scan FT120 (Foss Electric A/S) (only
wavelengths 1-550 are taken into account)

Research Institute of Geisenheim (Germany),
Department of Wine Analysis and Beverage
Research
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Compare GA to a commercial package for
variable selection (Foss) in what concerns:

GOAL OF THIS STUDY

* predictive ability

* interpretability of the selected wavelengths

TOTAL ACIDITY AS TARTARIC
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TEAC
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COMPARISON OF THE PREDICTIVE ABILITY

RMSEP signif.
GA WS PLS GA-WS GA-PLS WS-PLS
Total ac. (Malic) | 0.21 | 0.25 | 0.36 *(G) K (G) R (W)
Total ac. (Tartar.) = 0.3 0.5 0.4 % (G) *(G) ** (P)
Brix 0.12 | 0.09 | 0.11 % (W) * (W)
Extract 0.4 0.7 0.6 E(G) | T (G)
Folin C 149 | 137 | 164 * (W)
pH 0.05 | 0.06 | 0.07 = (G)
TEAC 11 | 1.3 | 09 *(G) wt ()

Data set PINE SEEDS:

*Moisture measured on 155 single seeds of
Scots pine ( Pinus sylvestris L.)

*Training set: 103 samples
*Validation set: 52 samples

*NIR spectra (751 wavelengths in the range
780-2280 nm) by NIRS 6500 (NIRSystems,
Silver Spring, MD, USA)

Torbjorn Lestander (Dept. of Silviculture, Swedish University of
Agricultural Sciences, Umed) and Paul Geladi (Unit of Biomass

Techn;nlogy and Chemistry, Swedish University of Agricultural Sciences,
Umed
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GOAL OF THIS STUDY

Select wavelengths that could be used in
a few NIR filter sensors to predict
moisture content in single seeds of Scots
pine.

The results are of importance to the
construction of an apparatus that uses
parallel NIR-sensors for automatic and
fast moisture determinations of conifer
seeds.
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CONCLUSIONS

The application of GA as a technique of wavelength
selection produced models that

- were able to emulate region choices ef«perts

» gave results better than a well-knowncommercial
software (lower RMSEP, better interpretation of
selected wavelengths)

-allowed to detect relevant regions for the
construction of filter instruments
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