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This paper presents a new sensitivity analysis method called ISTHME based on the principles of Morris's
method without the construction of randomized one-at-time (OAT) design. The presented method can be ap-
plied on any experimental design and more particularly on space filling designs. This specificity is very inter-
esting in terms of time and calculation economy. Indeed, we can use a universal design, which is adapted to
sensitivity analysis as well as optimization without any supplementary simulation.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In the last decade, industrial phenomena (oil industry, nuclear,
etc.) are often studied using numerical simulation [1]. These simula-
tion models are increasingly complex with a large number of input
parameters and consequently a long time of calculation. Therefore,
it becomes essential to determine the most important factors to in-
clude in a metamodel, simpler but realistic, by using screening [2]
or sensitivity analysis. The classical screening methods such as Plackett
and Burman designs [3], supersaturated designs [4,5] or sequential
bifurcation [6,7] are not adapted when the variation domains are
very large since the points are located close to the extreme limits
of the domain. Specific sensitivity analysis are now required as
Morris's method [8–12] which is better adapted and often applied
when a large number of simulations can be performed (more than
5k simulations, where k is the number of inputs) to identify the
few important factors among a lot in models. Nevertheless, this
method which allows the determination of the main effects and
gives indication on nonlinearities or interactions requires many
simulations without the possibility of using the simulations for a
subsequent study.

The method ISTHME presented in this article is based on classical
Morris's method but uses any set of points spread in the interior of
the experimental volume. This set is often a uniform design allowing
different studies in a second time as response surface [13–15] or/and
kriging [16–19].
. Claeys-Bruno).
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2. Presentation of the Morris method

2.1. Classical Morris's OAT method

The method proposed by Morris [11] provides a global sensitivity
measure to identify the factors with (1) negligible effects, (2) linear and
additive effects or (3) nonlinear or interaction effects. For that, a design
composed of individual randomized one-at-a-time (OAT) designs is
built in order to determine, for each factorXj, the elementary effects dj(y).

dj yð Þ ¼ yðx1;…;xj−1;xj þ Δj;xjþ1;…;xJÞ−yðxÞ
Δj

where Δj is a value in {1/(p−1),…, 1−1/(p−1)}, with p as the number
of levels (Fig. 1).

Considering L different trajectories, a statistical analysis of these
elementary effects provides the mean μj(y) which assesses the global
influence of the factor Xj.

μ j yð Þ ¼ 1
L

XL
‘¼1

d‘j yð Þ

As elementary effects with opposite signs cancel each other, the
mean of the absolute value μ⁎j(y) is also considered [9].

μ�
j yð Þ ¼ 1

L

XL
‘¼1

d‘j yð Þ
��� ���

The third considered statistic is the standard deviation σj(y)
which indicates the presence of higher order effects and measures
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Fig. 1. Morris's OAT design in a 3 dimensional space.
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Fig. 3. Parameters of construction for the constellations: the length l of the segments
and the angle α between two segments.
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the non-linearities or the interactions of the jth factor with others
factors.

σ j yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL
‘¼1

d‘j yð Þ−μ j yð Þ
� �2

vuut

According to the values of μ⁎j(y) and σj(y), Morris shows that stud-
ied factors can be classed into three groups as follows: factors having
(1) negligible effects, (2) linear and additive effects or (3) nonlinear
or interaction effects. Nevertheless, this method does not allow the
discrimination between non-linearities and interactions. For an
easier interpretation, the values of μ⁎j(y) and σj(y) can be plotted as
shown on Fig. 2.

Factors with negligible effects are characterized by low values of
μ⁎j(y) and σj(y), factors with linear effects present a high value of
μ⁎j(y) and a low value of σj(y), and for factors with nonlinear or inter-
action effects, μ⁎j(y) and σj(y) present high values.

2.2. Improved sensitivity through Morris extension method

Contrary to classical Morris's method, this method (ISTHME) is
based on any set of points and more particularly a uniform design.

The first step is the construction of constellations from this set of
points. In 2 dimensional space, the constellations are constructed
with 3 points, in 3 dimensional space, the constellations are defined
using 4 points and in k dimensional space, k+1 points are necessary
(a same point can belong to different constellations). For this con-
struction, we defined the following two parameters as shown Fig. 3:

- the length l of the segments of the constellations.
- the angle α between two segments of a constellation

All these constellations are chosen in order to obtain quasi orthog-
onal dihedron (with a fixed length l of segments) and it is obvious
Negligible 

μ*
j(y)

Nonlinear or interaction effects

Linear and additive effects

σj(y)

Fig. 2. Theoretical disposition of means μ⁎j(y) and standard deviationsσj(y) of the effects
distribution.
that the variation of l and α induces a variation of the number of con-
stellations (Fig. 4). Consequently, a preliminary study of these param-
eters is required to define values providing a sufficient number of
constellations for the calculations of step 2.

In a second time, elementary effects dj(y) are calculated for each
constellation and then, the sensitivity indices μ⁎j(y) and σj(y) are
calculated as follows (in a 2 dimensional space).

Let a function of two variables x1 and x2 varying respectively in a
domain [n1,m1] and [n2,m2], linear with interaction in a bidimensional
space.

f x1; x2ð Þ ¼ ax1 þ bx2 þ cx1x2 with : x1∈ n1;m1½ � andx2∈ n2; m2½ �

In order to separate the effects, we have to establish a decomposi-
tion of f as follows:

f x1; x2ð Þ ¼ f 0 þ f 1ðx1Þ þ f 2ðx2Þ þ f 12ðx1;x2Þ

where

f0 represents the mean effect
f1(x1) corresponds to the principal effect of x1
f2(x2) corresponds to the principal effect of x2
f12(x1, x2) corresponds to the interaction effect between x1 and x2.

The mean effect f0 is provided by the mean of f which is

f 0 ¼ 1
m1−n1ð Þ m2−n2ð Þ ∫

m2

n2

∫
m1

n1

f ðx1;x2Þdx1dx2

¼ 1
m1−n1ð Þ m2−n2ð Þ ∫

m2

n2

∫
m1

n1

f ðx1;x2Þdx1
" #

dx2
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Fig. 4. Example of 12 constellations (C1, C2,…, C12) in a 2 dimensional space with
N=40 points for fixed length of segments and angle α.
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Fig. 5. Constellations obtained for different length l of segments.
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Fig. 6. Constellations obtained for variable angle α.
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The principal effect of x1 is obtained by subtracting from f(x1, x2),
the mean effect f0 and by integrating the function obtained on x2,
which cancels the effect of this variable.
Table 1
Number of constellations in function of α and all segment lengths l.

α (°) Number of constellations

90 0
85–95 0
82–98 26
80–100 433
75–105 4324
70–110 32,129

Table 2
Number of constellations in function of α and for l varying
between 0.60 and 0.90.

α (°) Number of constellations

90 0
85–95 0
82–98 2
80–100 42
75–105 408
70–110 2140

Table 3
Details of calculations of μ⁎j(y) and σj(y) for the simulation model Y1 with 408 constel-
lations. For each factor (X1,…,X5) and for each constellation (C1–C408), elementary ef-
fects dj(y) are calculated and reported in the second column. The values μ⁎j(y) and σj(y)
obtained for each factor are reported in columns 3 and 4.

Factor Elementary effects dj(y) μ�
j yð Þ ¼ 1

L

PL
‘¼1

d‘j yð Þ
��� ��� σ�

j yð Þ ¼ 1
L

PL
‘¼1

d‘j yð Þ
��� ���

X1 27.899, 27.899, 27.900, 27.900,
,…,
27.900, 27.899, 27.900, 27.901.

27.8999 0.0009

X2 2.300,2.301, 2.298, 2.297,
,…,
2.300, 2;300, 2.300, 2.299

2.2992 0.0009

X3 6.500, 6.500, 6.500, 6.500,
,…,
6.498, 6.498, 6;500, 6;501

6.4997 0.0011

X4 52.400, 52.400, 52.400, 52.399,
,…,
52.400, 52.400, 52.397, 52.398

52.3992 0.0009

X5 16.598, 16.601, 16.602, 16.602,
,…,
16.599, 16.600, 16.599, 16.600

16.6000 0.0009
Thus

f 1 x1ð Þ ¼ 1
m2−n2ð Þ ∫

m2

n2

ðf ðx1;x2Þ−f 0Þdx2

and f 2 x2ð Þ ¼ 1
m1−n1ð Þ ∫

m1

n1

ðf ðx1;x2Þ−f 0Þdx1

For each constellation, an elementary effect dj(y) per factor j can
be computed by interpolating a first order polynomial equation

Y ¼ d0 þ
Xp
j¼1

djXj

The elementary effects are provided by the coefficients dj. Thus,
there will be as many elementary effects as constellations and the
sensitivity indices μ⁎j(y) and σj(y) are calculated according to Morris's
method presented above where the mean and the standard deviation
are computed on the whole population of constellations. The same
procedure is generalized for any dimension.

3. Results and discussion

3.1. Study of the constellations: length l of segments and angle α of
dihedrons in a 2 dimensional space

In our method, the first step consists in the construction of con-
stellations using points of a space filling design. The number of
these constellations depends on two parameters l (length of the seg-
ments) and α (the angle between two segments).
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Fig. 7. Sensitivity measures μ⁎j(y) and σj(y) for the model Y1.
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Fig. 8. Sensitivity measures μ⁎j(y) and σj(y) for the model Y2.
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Fig. 5 shows constellations obtained with different length l of the
segments.

A systematic study of the constellations was achieved and has
clearly shown that the number of constellations decreases when the
segment length l increases and we know that a high number of con-
stellations is needed in order to have representative values of μ⁎j(y)
and σj(y). Moreover, long segments appear as not pertinent since
the non-linearities and interactions effects could be hidden and
averaged. Therefore, we will only keep constellations with short
lengths.

In the same way, the number of constellations depends on the
angle α, theoretically fixed to 90°. Fig. 6 shows two different cases
of constellations obtained with variable angle α.

We can observe that the number of constellations varies with the
variation of the segment length l and the angle α. In order to perform
statistical study of the two parameters μ⁎j(y) et σj(y), we considered
only short lengths and angle varying from 70° to 110°.
3.2. Study in a five dimensional space

In order to test the ISTHME method, different cases are proposed
in a five dimensional space.

In a first step, we draw up constellations from a WSP space filling
design [20] with 100 points. The segment lengths l and the angle α
are studied and Table 1 reports the number of constellations detected
in function of the angle α considering all segment lengths l.

As explained above, it would be preferable to only consider short
segment lengths, but, with the number of constellations decreasing
quickly, a greater variation of the angle α is needed in order to obtain
significant and sufficient information. Table 2 reports the variation of
the number of constellations considering only short segment lengths
(0.60b lb0.90).

Different studies were generated from simulated results, in three
cases with different significant effects. To calculate μ⁎j(y) and σj(y),
408 constellations were used with segment length varying from
0.60 to 0.90 and α from 75° to 105°. The scales of the plots are adjusted
in order to make an easier interpretation.
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Fig. 9. Sensitivity measures μ⁎j(y) and σj(y) for the model Y3.
3.2.1. Simulation model Y1
In the first case, only some linear effects are simulated as significant.

From the 408 constellations, the elementary effects of the 5 factorswere
calculated (Table 3) and the values of the sensitivitymeasures μ⁎j(y) and
σj(y) are reported on Fig. 7.

Fig. 7 shows that factors X1 and X4 are well separated from the
other factors because of both high values of μ⁎j(y) and low values of
σj(y). Factor X5 presents a high value of μ⁎j(y) and a low value of
σj(y) but to a lesser extent. So we can conclude that X1, X4 and X5

have significant linear effect and X2 and X3 are relatively unimportant
in this model.

A global interpretation of the plot leads to the following
conclusions:

X1 linear effect
X2 negligible effect
X3 negligible effect
X4 linear effect
X5 low linear effect

to compare to the reference model Y1, which is

Y1 ¼ 240:4þ 27:9 X1 þ 3:0 X2−6:5 X3–52:4 X4 þ 16:6 X5

The ranking provided by the ISTHME method is in accordance
with the coefficients values of the reference model. The linear effects
are accurately identified.

3.2.2. Simulation model Y2
In the second case, linear and interaction effects were considered

and simulated in the model Y2 in order to check their differentiation
on the plot.

The results are reported on Fig. 8. The factor X5 presents a high
value of μ⁎j(y) and a low value of σj(y) corresponding to a significant
linear effect for this factor in the considered model. The factors X1,
X2, and X4 present high values of μ⁎j(y) and high values of σj(y), so
we can conclude that these factors, well separated from the linear
or negligible effects, have non linear or interaction effects.

The complete interpretation of Fig. 8 leads to the following
conclusions:

X1 nonlinear or interaction effect
X2 nonlinear or interaction effect
X3 negligible effect
X4 nonlinear or interaction effect interaction
X5 linear effect

This analysis is consistent with the reference model Y2 whose co-
efficients are

Y2 ¼ 278:5þ 10:7 X1 þ 41:4 X2 þ 3:7 X3 þ 10:4 X4–52:9X5
þ 38:7 X1X2−31:9X1X4

3.2.3. Simulation model Y3
In the third reference model, we added quadratic and cubic effects

in order to visualize their respective position on the plot.
Fig. 9 clearly shows the following 2 groups of factors: the factors

X1, X2, X3, X5 with high values of μ⁎j(y) and σj(y) corresponding to non-
linear or interaction effect and the factor X4 with low values of μ⁎j(y)
and σj(y) corresponding to an unimportant factor.

The interpretation of Fig. 9 provides conclusion as

X1 has nonlinear or interaction effect
X2 has nonlinear or interaction effect
X3 has nonlinear or interaction effect
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X4 has negligible effect
X5 has nonlinear or interaction effect

which is in accordance with the reference model

Y3 ¼ 112þ 4:2 X1–5:3 X2 þ 21:7 X3–4:1 X4 þ 20:6 X5–31:3 X1
2

þ 29:8 X3
3
–31:2 X2X5

The plot does not show any difference between interactions, qua-
dratic or cubic effects but separates the non influential factors which
is the aim of a sensitivity analysis.

In the three presented cases, all the effects are clearly identified:
the conclusions are true compared to the “true” reference model.

4. Conclusion

The different presented cases show that this new approach, ISTHME,
leads to promising results for sensitivity analysis. It allows the identifica-
tion of non influential factors without hypothesis on effects contrary
to classical screening strategies such as Plackett and Burman designs
which are not adapted for simulation problems. In such designs,
the effects are supposed to be independent and the presence of in-
teraction effects could distort the interpretation and generate false
positive or false negative. In the ISTHME method, even if the non
linear and interaction effects are not distinguished, negligible factors are
safely identified and could be subsequently removed in the final model.
More complicated models (with high number of parameters and non-
linear complex effects) for industrial problems are now in progress.

These results are identical to those obtained with classical Morris
method, but the construction of the design is very different since it
is based on any experimental design and more particularly space fill-
ing design for which points are uniformly spread in the experimental
volume . This specificity is, in our opinion, very interesting in terms of
time and calculation economy because we can re-use runs. Moreover,
we could consider a universal design which is adapted to sensitivity
analysis as well as optimization with no supplementary simulations.
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